act/vendor/github.com/soniakeys/graph/fromlist.go

499 lines
14 KiB
Go
Raw Normal View History

// Copyright 2014 Sonia Keys
// License MIT: http://opensource.org/licenses/MIT
package graph
import "github.com/soniakeys/bits"
// FromList represents a rooted tree (or forest) where each node is associated
// with a half arc identifying an arc "from" another node.
//
// Other terms for this data structure include "parent list",
// "predecessor list", "in-tree", "inverse arborescence", and
// "spaghetti stack."
//
// The Paths member represents the tree structure. Leaves and MaxLen are
// not always needed. Where Leaves is used it serves as a bitmap where
// Leaves.Bit(n) == 1 for each leaf n of the tree. Where MaxLen is used it is
// provided primarily as a convenience for functions that might want to
// anticipate the maximum path length that would be encountered traversing
// the tree.
//
// Various graph search methods use a FromList to returns search results.
// For a start node of a search, From will be -1 and Len will be 1. For other
// nodes reached by the search, From represents a half arc in a path back to
// start and Len represents the number of nodes in the path. For nodes not
// reached by the search, From will be -1 and Len will be 0.
//
// A single FromList can also represent a forest. In this case paths from
// all leaves do not return to a single root node, but multiple root nodes.
//
// While a FromList generally encodes a tree or forest, it is technically
// possible to encode a cyclic graph. A number of FromList methods require
// the receiver to be acyclic. Graph methods documented to return a tree or
// forest will never return a cyclic FromList. In other cases however,
// where a FromList is not known to by cyclic, the Cyclic method can be
// useful to validate the acyclic property.
type FromList struct {
Paths []PathEnd // tree representation
Leaves bits.Bits // leaves of tree
MaxLen int // length of longest path, max of all PathEnd.Len values
}
// PathEnd associates a half arc and a path length.
//
// A PathEnd list is an element type of FromList.
type PathEnd struct {
From NI // a "from" half arc, the node the arc comes from
Len int // number of nodes in path from start
}
/* NewFromList could be confusing now with bits also needing allocation.
maybe best to not have this function. Maybe a more useful new would be
one that took a PathEnd slice and intitialized everything including roots
and max len. Maybe its time for a separate []PathEnd type when that's
all that's needed. (and reconsider the name PathEnd)
*/
// NewFromList creates a FromList object of given order.
//
// The Paths member is allocated to the specified order n but other members
// are left as zero values.
func NewFromList(n int) FromList {
return FromList{Paths: make([]PathEnd, n)}
}
// BoundsOk validates the "from" values in the list.
//
// Negative values are allowed as they indicate root nodes.
//
// BoundsOk returns true when all from values are less than len(t).
// Otherwise it returns false and a node with a from value >= len(t).
func (f FromList) BoundsOk() (ok bool, n NI) {
for n, e := range f.Paths {
if int(e.From) >= len(f.Paths) {
return false, NI(n)
}
}
return true, -1
}
// CommonStart returns the common start node of minimal paths to a and b.
//
// It returns -1 if a and b cannot be traced back to a common node.
//
// The method relies on populated PathEnd.Len members. Use RecalcLen if
// the Len members are not known to be present and correct.
func (f FromList) CommonStart(a, b NI) NI {
p := f.Paths
if p[a].Len < p[b].Len {
a, b = b, a
}
for bl := p[b].Len; p[a].Len > bl; {
a = p[a].From
if a < 0 {
return -1
}
}
for a != b {
a = p[a].From
if a < 0 {
return -1
}
b = p[b].From
}
return a
}
// Cyclic determines if f contains a cycle, a non-empty path from a node
// back to itself.
//
// Cyclic returns true if g contains at least one cycle. It also returns
// an example of a node involved in a cycle.
//
// Cyclic returns (false, -1) in the normal case where f is acyclic.
// Note that the bool is not an "ok" return. A cyclic FromList is usually
// not okay.
func (f FromList) Cyclic() (cyclic bool, n NI) {
p := f.Paths
vis := bits.New(len(p))
for i := range p {
path := bits.New(len(p))
for n := i; vis.Bit(n) == 0; {
vis.SetBit(n, 1)
path.SetBit(n, 1)
if n = int(p[n].From); n < 0 {
break
}
if path.Bit(n) == 1 {
return true, NI(n)
}
}
}
return false, -1
}
// IsolatedNodeBits returns a bitmap of isolated nodes in receiver graph f.
//
// An isolated node is one with no arcs going to or from it.
func (f FromList) IsolatedNodes() (iso bits.Bits) {
p := f.Paths
iso = bits.New(len(p))
iso.SetAll()
for n, e := range p {
if e.From >= 0 {
iso.SetBit(n, 0)
iso.SetBit(int(e.From), 0)
}
}
return
}
// PathTo decodes a FromList, recovering a single path.
//
// The path is returned as a list of nodes where the first element will be
// a root node and the last element will be the specified end node.
//
// Only the Paths member of the receiver is used. Other members of the
// FromList do not need to be valid, however the MaxLen member can be useful
// for allocating argument p.
//
// Argument p can provide the result slice. If p has capacity for the result
// it will be used, otherwise a new slice is created for the result.
//
// See also function PathTo.
func (f FromList) PathTo(end NI, p []NI) []NI {
return PathTo(f.Paths, end, p)
}
// PathTo decodes a single path from a PathEnd list.
//
// A PathEnd list is the main data representation in a FromList. See FromList.
//
// PathTo returns a list of nodes where the first element will be
// a root node and the last element will be the specified end node.
//
// Argument p can provide the result slice. If p has capacity for the result
// it will be used, otherwise a new slice is created for the result.
//
// See also method FromList.PathTo.
func PathTo(paths []PathEnd, end NI, p []NI) []NI {
n := paths[end].Len
if n == 0 {
return p[:0]
}
if cap(p) >= n {
p = p[:n]
} else {
p = make([]NI, n)
}
for {
n--
p[n] = end
if n == 0 {
return p
}
end = paths[end].From
}
}
// PathToLabeled decodes a FromList, recovering a single path.
//
// The start of the returned path will be a root node of the FromList.
//
// Only the Paths member of the receiver is used. Other members of the
// FromList do not need to be valid, however the MaxLen member can be useful
// for allocating argument p.
//
// Argument p can provide the result slice. If p has capacity for the result
// it will be used, otherwise a new slice is created for the result.
//
// See also function PathTo.
func (f FromList) PathToLabeled(end NI, labels []LI, p []Half) LabeledPath {
n := f.Paths[end].Len - 1
if n <= 0 {
return LabeledPath{end, p[:0]}
}
if cap(p) >= n {
p = p[:n]
} else {
p = make([]Half, n)
}
for {
n--
p[n] = Half{To: end, Label: labels[end]}
end = f.Paths[end].From
if n == 0 {
return LabeledPath{end, p}
}
}
}
// Preorder traverses a FromList in preorder.
//
// Nodes are visited in order such that for any node n with from node fr,
// fr is visited before n. Where f represents a tree, the visit ordering
// corresponds to a preordering, or depth first traversal of the tree.
// Where f represents a forest, the preorderings of the trees can be
// intermingled.
//
// Leaves must be set correctly first. Use RecalcLeaves if leaves are not
// known to be set correctly. FromList f cannot be cyclic.
//
// Traversal continues while visitor function v returns true. It terminates
// if v returns false. Preorder returns true if it completes without v
// returning false. Preorder returns false if traversal is terminated by v
// returning false.
func (f FromList) Preorder(v func(NI) bool) bool {
p := f.Paths
done := bits.New(len(p))
var df func(NI) bool
df = func(n NI) bool {
done.SetBit(int(n), 1)
if fr := p[n].From; fr >= 0 && done.Bit(int(fr)) == 0 {
df(fr)
}
return v(n)
}
for n := range f.Paths {
p[n].Len = 0
}
return f.Leaves.IterateOnes(func(n int) bool {
return df(NI(n))
})
}
// RecalcLeaves recomputes the Leaves member of f.
func (f *FromList) RecalcLeaves() {
p := f.Paths
lv := &f.Leaves
if lv.Num != len(p) {
*lv = bits.New(len(p))
}
lv.SetAll()
for n := range f.Paths {
if fr := p[n].From; fr >= 0 {
lv.SetBit(int(fr), 0)
}
}
}
// RecalcLen recomputes Len for each path end, and recomputes MaxLen.
//
// RecalcLen relies on the Leaves member being valid. If it is not known
// to be valid, call RecalcLeaves before calling RecalcLen.
//
// RecalcLen will panic if the FromList is cyclic. Use the Cyclic method
// if needed to verify that the FromList is acyclic.
func (f *FromList) RecalcLen() {
p := f.Paths
var setLen func(NI) int
setLen = func(n NI) int {
switch {
case p[n].Len > 0:
return p[n].Len
case p[n].From < 0:
p[n].Len = 1
return 1
}
l := 1 + setLen(p[n].From)
p[n].Len = l
return l
}
for n := range f.Paths {
p[n].Len = 0
}
f.MaxLen = 0
f.Leaves.IterateOnes(func(n int) bool {
if l := setLen(NI(n)); l > f.MaxLen {
f.MaxLen = l
}
return true
})
}
// ReRoot reorients the tree containing n to make n the root node.
//
// It keeps the tree connected by "reversing" the path from n to the old root.
//
// After ReRoot, the Leaves and Len members are invalid.
// Call RecalcLeaves or RecalcLen as needed.
func (f *FromList) ReRoot(n NI) {
p := f.Paths
fr := p[n].From
if fr < 0 {
return
}
p[n].From = -1
for {
ff := p[fr].From
p[fr].From = n
if ff < 0 {
return
}
n = fr
fr = ff
}
}
// Root finds the root of a node in a FromList.
func (f FromList) Root(n NI) NI {
for p := f.Paths; ; {
fr := p[n].From
if fr < 0 {
return n
}
n = fr
}
}
// Transpose constructs the directed graph corresponding to FromList f
// but with arcs in the opposite direction. That is, from roots toward leaves.
//
// If non-nil argrument roots is passed, Transpose populates it as roots of
// the resulting forest and returns nRoots as a count of the roots.
//
// The method relies only on the From member of f.Paths. Other members of
// the FromList are not used.
func (f FromList) Transpose(roots *bits.Bits) (forest Directed, nRoots int) {
p := f.Paths
g := make(AdjacencyList, len(p))
if roots != nil {
nRoots = len(p)
if roots.Num != nRoots {
*roots = bits.New(nRoots)
}
roots.SetAll()
}
for i, e := range p {
if e.From == -1 {
continue
}
g[e.From] = append(g[e.From], NI(i))
if roots != nil && roots.Bit(i) == 1 {
roots.SetBit(i, 0)
nRoots--
}
}
return Directed{g}, nRoots
}
// TransposeLabeled constructs the labeled directed graph corresponding
// to FromList f but with arcs in the opposite direction. That is, from
// roots toward leaves.
//
// The argument labels can be nil. In this case labels are generated matching
// the path indexes. This corresponds to the "to", or child node.
//
// If labels is non-nil, it must be the same length as t.Paths and is used
// to look up label numbers by the path index.
//
// If non-nil argrument roots is passed, Transpose populates it as roots of
// the resulting forest and returns nRoots as a count of the roots.
//
// The method relies only on the From member of f.Paths. Other members of
// the FromList are not used.
func (f FromList) TransposeLabeled(labels []LI, roots *bits.Bits) (forest LabeledDirected, nRoots int) {
p := f.Paths
g := make(LabeledAdjacencyList, len(p))
if roots != nil {
nRoots = len(p)
if roots.Num != nRoots {
*roots = bits.New(nRoots)
}
roots.SetAll()
}
for i, p := range f.Paths {
if p.From == -1 {
continue
}
l := LI(i)
if labels != nil {
l = labels[i]
}
g[p.From] = append(g[p.From], Half{NI(i), l})
if roots != nil && roots.Bit(i) == 1 {
roots.SetBit(i, 0)
nRoots--
}
}
return LabeledDirected{g}, nRoots
}
// Undirected constructs the undirected graph corresponding to FromList f.
//
// The resulting graph will be a tree or forest.
//
// If non-nil argrument roots is passed, Transpose populates it as roots of
// the resulting forest and returns nRoots as a count of the roots.
//
// The method relies only on the From member of f.Paths. Other members of
// the FromList are not used.
func (f FromList) Undirected(roots *bits.Bits) (forest Undirected, nRoots int) {
p := f.Paths
g := make(AdjacencyList, len(p))
if roots != nil {
nRoots = len(p)
if roots.Num != nRoots {
*roots = bits.New(nRoots)
}
roots.SetAll()
}
for i, e := range p {
if e.From == -1 {
continue
}
g[i] = append(g[i], e.From)
g[e.From] = append(g[e.From], NI(i))
if roots != nil && roots.Bit(i) == 1 {
roots.SetBit(i, 0)
nRoots--
}
}
return Undirected{g}, nRoots
}
// LabeledUndirected constructs the labeled undirected graph corresponding
// to FromList f.
//
// The resulting graph will be a tree or forest.
//
// The argument labels can be nil. In this case labels are generated matching
// the path indexes. This corresponds to the "to", or child node.
//
// If labels is non-nil, it must be the same length as t.Paths and is used
// to look up label numbers by the path index.
//
// If non-nil argrument roots is passed, LabeledUndirected populates it as
// roots of the resulting forest and returns nRoots as a count of the roots.
//
// The method relies only on the From member of f.Paths. Other members of
// the FromList are not used.
func (f FromList) LabeledUndirected(labels []LI, roots *bits.Bits) (forest LabeledUndirected, nRoots int) {
p := f.Paths
g := make(LabeledAdjacencyList, len(p))
if roots != nil {
nRoots = len(p)
if roots.Num != nRoots {
*roots = bits.New(nRoots)
}
roots.SetAll()
}
for i, p := range f.Paths {
if p.From == -1 {
continue
}
l := LI(i)
if labels != nil {
l = labels[i]
}
g[i] = append(g[i], Half{p.From, l})
g[p.From] = append(g[p.From], Half{NI(i), l})
if roots != nil && roots.Bit(i) == 1 {
roots.SetBit(i, 0)
nRoots--
}
}
return LabeledUndirected{g}, nRoots
}