// Copyright 2014 Sonia Keys // License MIT: http://opensource.org/licenses/MIT package graph // adj_RO.go is code generated from adj_cg.go by directives in graph.go. // Editing adj_cg.go is okay. // DO NOT EDIT adj_RO.go. The RO is for Read Only. import ( "errors" "fmt" "math/rand" "github.com/soniakeys/bits" ) // ArcDensity returns density for an simple directed graph. // // See also ArcDensity function. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledAdjacencyList) ArcDensity() float64 { return ArcDensity(len(g), g.ArcSize()) } // ArcSize returns the number of arcs in g. // // Note that for an undirected graph without loops, the number of undirected // edges -- the traditional meaning of graph size -- will be ArcSize()/2. // On the other hand, if g is an undirected graph that has or may have loops, // g.ArcSize()/2 is not a meaningful quantity. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledAdjacencyList) ArcSize() int { m := 0 for _, to := range g { m += len(to) } return m } // BoundsOk validates that all arcs in g stay within the slice bounds of g. // // BoundsOk returns true when no arcs point outside the bounds of g. // Otherwise it returns false and an example arc that points outside of g. // // Most methods of this package assume the BoundsOk condition and may // panic when they encounter an arc pointing outside of the graph. This // function can be used to validate a graph when the BoundsOk condition // is unknown. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledAdjacencyList) BoundsOk() (ok bool, fr NI, to Half) { for fr, to := range g { for _, to := range to { if to.To < 0 || to.To >= NI(len(g)) { return false, NI(fr), to } } } return true, -1, to } // BreadthFirst traverses a directed or undirected graph in breadth // first order. // // Traversal starts at node start and visits the nodes reachable from // start. The function visit is called for each node visited. Nodes // not reachable from start are not visited. // // There are equivalent labeled and unlabeled versions of this method. // // See also alt.BreadthFirst, a variant with more options, and // alt.BreadthFirst2, a direction optimizing variant. func (g LabeledAdjacencyList) BreadthFirst(start NI, visit func(NI)) { v := bits.New(len(g)) v.SetBit(int(start), 1) visit(start) var next []NI for frontier := []NI{start}; len(frontier) > 0; { for _, n := range frontier { for _, nb := range g[n] { if v.Bit(int(nb.To)) == 0 { v.SetBit(int(nb.To), 1) visit(nb.To) next = append(next, nb.To) } } } frontier, next = next, frontier[:0] } } // Copy makes a deep copy of g. // Copy also computes the arc size ma, the number of arcs. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledAdjacencyList) Copy() (c LabeledAdjacencyList, ma int) { c = make(LabeledAdjacencyList, len(g)) for n, to := range g { c[n] = append([]Half{}, to...) ma += len(to) } return } // DepthFirst traverses a directed or undirected graph in depth // first order. // // Traversal starts at node start and visits the nodes reachable from // start. The function visit is called for each node visited. Nodes // not reachable from start are not visited. // // There are equivalent labeled and unlabeled versions of this method. // // See also alt.DepthFirst, a variant with more options. func (g LabeledAdjacencyList) DepthFirst(start NI, visit func(NI)) { v := bits.New(len(g)) var f func(NI) f = func(n NI) { visit(n) v.SetBit(int(n), 1) for _, to := range g[n] { if v.Bit(int(to.To)) == 0 { f(to.To) } } } f(start) } // HasArc returns true if g has any arc from node `fr` to node `to`. // // Also returned is the index within the slice of arcs from node `fr`. // If no arc from `fr` to `to` is present, HasArc returns false, -1. // // There are equivalent labeled and unlabeled versions of this method. // // See also the method ParallelArcs, which finds all parallel arcs from // `fr` to `to`. func (g LabeledAdjacencyList) HasArc(fr, to NI) (bool, int) { for x, h := range g[fr] { if h.To == to { return true, x } } return false, -1 } // AnyLoop identifies if a graph contains a loop, an arc that leads from a // a node back to the same node. // // If g contains a loop, the method returns true and an example of a node // with a loop. If there are no loops in g, the method returns false, -1. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledAdjacencyList) AnyLoop() (bool, NI) { for fr, to := range g { for _, to := range to { if NI(fr) == to.To { return true, to.To } } } return false, -1 } // AddNode maps a node in a supergraph to a subgraph node. // // Argument p must be an NI in supergraph s.Super. AddNode panics if // p is not a valid node index of s.Super. // // AddNode is idempotent in that it does not add a new node to the subgraph if // a subgraph node already exists mapped to supergraph node p. // // The mapped subgraph NI is returned. func (s *LabeledSubgraph) AddNode(p NI) (b NI) { if int(p) < 0 || int(p) >= s.Super.Order() { panic(fmt.Sprint("AddNode: NI ", p, " not in supergraph")) } if b, ok := s.SubNI[p]; ok { return b } a := s.LabeledAdjacencyList b = NI(len(a)) s.LabeledAdjacencyList = append(a, nil) s.SuperNI = append(s.SuperNI, p) s.SubNI[p] = b return } // AddArc adds an arc to a subgraph. // // Arguments fr, to must be NIs in supergraph s.Super. As with AddNode, // AddArc panics if fr and to are not valid node indexes of s.Super. // // The arc specfied by fr, to must exist in s.Super. Further, the number of // parallel arcs in the subgraph cannot exceed the number of corresponding // parallel arcs in the supergraph. That is, each arc already added to the // subgraph counts against the arcs available in the supergraph. If a matching // arc is not available, AddArc returns an error. // // If a matching arc is available, subgraph nodes are added as needed, the // subgraph arc is added, and the method returns nil. func (s *LabeledSubgraph) AddArc(fr NI, to Half) error { // verify supergraph NIs first, but without adding subgraph nodes just yet. if int(fr) < 0 || int(fr) >= s.Super.Order() { panic(fmt.Sprint("AddArc: NI ", fr, " not in supergraph")) } if int(to.To) < 0 || int(to.To) >= s.Super.Order() { panic(fmt.Sprint("AddArc: NI ", to.To, " not in supergraph")) } // count existing matching arcs in subgraph n := 0 a := s.LabeledAdjacencyList if bf, ok := s.SubNI[fr]; ok { if bt, ok := s.SubNI[to.To]; ok { // both NIs already exist in subgraph, need to count arcs bTo := to bTo.To = bt for _, t := range a[bf] { if t == bTo { n++ } } } } // verify matching arcs are available in supergraph for _, t := range (*s.Super)[fr] { if t == to { if n > 0 { n-- // match existing arc continue } // no more existing arcs need to be matched. nodes can finally // be added as needed and then the arc can be added. bf := s.AddNode(fr) to.To = s.AddNode(to.To) s.LabeledAdjacencyList[bf] = append(s.LabeledAdjacencyList[bf], to) return nil // success } } return errors.New("arc not available in supergraph") } func (super LabeledAdjacencyList) induceArcs(sub map[NI]NI, sup []NI) LabeledAdjacencyList { s := make(LabeledAdjacencyList, len(sup)) for b, p := range sup { var a []Half for _, to := range super[p] { if bt, ok := sub[to.To]; ok { to.To = bt a = append(a, to) } } s[b] = a } return s } // InduceList constructs a node-induced subgraph. // // The subgraph is induced on receiver graph g. Argument l must be a list of // NIs in receiver graph g. Receiver g becomes the supergraph of the induced // subgraph. // // Duplicate NIs are allowed in list l. The duplicates are effectively removed // and only a single corresponding node is created in the subgraph. Subgraph // NIs are mapped in the order of list l, execpt for ignoring duplicates. // NIs in l that are not in g will panic. // // Returned is the constructed Subgraph object containing the induced subgraph // and the mappings to the supergraph. func (g *LabeledAdjacencyList) InduceList(l []NI) *LabeledSubgraph { sub, sup := mapList(l) return &LabeledSubgraph{ Super: g, SubNI: sub, SuperNI: sup, LabeledAdjacencyList: g.induceArcs(sub, sup)} } // InduceBits constructs a node-induced subgraph. // // The subgraph is induced on receiver graph g. Argument t must be a bitmap // representing NIs in receiver graph g. Receiver g becomes the supergraph // of the induced subgraph. NIs in t that are not in g will panic. // // Returned is the constructed Subgraph object containing the induced subgraph // and the mappings to the supergraph. func (g *LabeledAdjacencyList) InduceBits(t bits.Bits) *LabeledSubgraph { sub, sup := mapBits(t) return &LabeledSubgraph{ Super: g, SubNI: sub, SuperNI: sup, LabeledAdjacencyList: g.induceArcs(sub, sup)} } // IsSimple checks for loops and parallel arcs. // // A graph is "simple" if it has no loops or parallel arcs. // // IsSimple returns true, -1 for simple graphs. If a loop or parallel arc is // found, simple returns false and a node that represents a counterexample // to the graph being simple. // // See also separate methods AnyLoop and AnyParallel. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledAdjacencyList) IsSimple() (ok bool, n NI) { if lp, n := g.AnyLoop(); lp { return false, n } if pa, n, _ := g.AnyParallel(); pa { return false, n } return true, -1 } // IsolatedNodes returns a bitmap of isolated nodes in receiver graph g. // // An isolated node is one with no arcs going to or from it. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledAdjacencyList) IsolatedNodes() (i bits.Bits) { i = bits.New(len(g)) i.SetAll() for fr, to := range g { if len(to) > 0 { i.SetBit(fr, 0) for _, to := range to { i.SetBit(int(to.To), 0) } } } return } // Order is the number of nodes in receiver g. // // It is simply a wrapper method for the Go builtin len(). // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledAdjacencyList) Order() int { // Why a wrapper for len()? Mostly for Directed and Undirected. // u.Order() is a little nicer than len(u.LabeledAdjacencyList). return len(g) } // ParallelArcs identifies all arcs from node `fr` to node `to`. // // The returned slice contains an element for each arc from node `fr` to node `to`. // The element value is the index within the slice of arcs from node `fr`. // // There are equivalent labeled and unlabeled versions of this method. // // See also the method HasArc, which stops after finding a single arc. func (g LabeledAdjacencyList) ParallelArcs(fr, to NI) (p []int) { for x, h := range g[fr] { if h.To == to { p = append(p, x) } } return } // Permute permutes the node labeling of receiver g. // // Argument p must be a permutation of the node numbers of the graph, // 0 through len(g)-1. A permutation returned by rand.Perm(len(g)) for // example is acceptable. // // The graph is permuted in place. The graph keeps the same underlying // memory but values of the graph representation are permuted to produce // an isomorphic graph. The node previously labeled 0 becomes p[0] and so on. // See example (or the code) for clarification. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledAdjacencyList) Permute(p []int) { old := append(LabeledAdjacencyList{}, g...) // shallow copy for fr, arcs := range old { for i, to := range arcs { arcs[i].To = NI(p[to.To]) } g[p[fr]] = arcs } } // ShuffleArcLists shuffles the arc lists of each node of receiver g. // // For example a node with arcs leading to nodes 3 and 7 might have an // arc list of either [3 7] or [7 3] after calling this method. The // connectivity of the graph is not changed. The resulting graph stays // equivalent but a traversal will encounter arcs in a different // order. // // If Rand r is nil, the rand package default shared source is used. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledAdjacencyList) ShuffleArcLists(r *rand.Rand) { ri := rand.Intn if r != nil { ri = r.Intn } // Knuth-Fisher-Yates for _, to := range g { for i := len(to); i > 1; { j := ri(i) i-- to[i], to[j] = to[j], to[i] } } }