// Copyright 2014 Sonia Keys // License MIT: http://opensource.org/licenses/MIT package graph import ( "errors" "fmt" "github.com/soniakeys/bits" ) // undir_RO.go is code generated from undir_cg.go by directives in graph.go. // Editing undir_cg.go is okay. It is the code generation source. // DO NOT EDIT undir_RO.go. // The RO means read only and it is upper case RO to slow you down a bit // in case you start to edit the file. //------------------- // Bipartite constructs an object indexing the bipartite structure of a graph. // // In a bipartite component, nodes can be partitioned into two sets, or // "colors," such that every edge in the component goes from one set to the // other. // // If the graph is bipartite, the method constructs and returns a new // Bipartite object as b and returns ok = true. // // If the component is not bipartite, a representative odd cycle as oc and // returns ok = false. // // In the case of a graph with mulitiple connected components, this method // provides no control over the color orientation by component. See // Undirected.BipartiteComponent if this control is needed. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) Bipartite() (b *LabeledBipartite, oc []NI, ok bool) { c1 := bits.New(g.Order()) c2 := bits.New(g.Order()) r, _, _ := g.ConnectedComponentReps() // accumulate n2 number of zero bits in c2 as number of one bits in n1 var n, n2 int for _, r := range r { ok, n, _, oc = g.BipartiteComponent(r, c1, c2) if !ok { return } n2 += n } return &LabeledBipartite{g, c2, n2}, nil, true } // BipartiteComponent analyzes the bipartite structure of a connected component // of an undirected graph. // // In a bipartite component, nodes can be partitioned into two sets, or // "colors," such that every edge in the component goes from one set to the // other. // // Argument n can be any representative node of the component to be analyzed. // Arguments c1 and c2 must be separate bits.Bits objects constructed to be // of length of the number of nodes of g. These bitmaps are used in the // component traversal and the bits of the component must be zero when the // method is called. // // If the component is bipartite, BipartiteComponent populates bitmaps // c1 and c2 with the two-coloring of the component, always assigning the set // with representative node n to bitmap c1. It returns b = true, // and also returns the number of bits set in c1 and c2 as n1 and n2 // respectively. // // If the component is not bipartite, BipartiteComponent returns b = false // and a representative odd cycle as oc. // // See also method Bipartite. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) BipartiteComponent(n NI, c1, c2 bits.Bits) (b bool, n1, n2 int, oc []NI) { a := g.LabeledAdjacencyList b = true var open bool var df func(n NI, c1, c2 *bits.Bits, n1, n2 *int) df = func(n NI, c1, c2 *bits.Bits, n1, n2 *int) { c1.SetBit(int(n), 1) *n1++ for _, nb := range a[n] { if c1.Bit(int(nb.To)) == 1 { b = false oc = []NI{nb.To, n} open = true return } if c2.Bit(int(nb.To)) == 1 { continue } df(nb.To, c2, c1, n2, n1) if b { continue } switch { case !open: case n == oc[0]: open = false default: oc = append(oc, n) } return } } df(n, &c1, &c2, &n1, &n2) if b { return b, n1, n2, nil } return b, 0, 0, oc } // BronKerbosch1 finds maximal cliques in an undirected graph. // // The graph must not contain parallel edges or loops. // // See https://en.wikipedia.org/wiki/Clique_(graph_theory) and // https://en.wikipedia.org/wiki/Bron%E2%80%93Kerbosch_algorithm for background. // // This method implements the BronKerbosch1 algorithm of WP; that is, // the original algorithm without improvements. // // The method calls the emit argument for each maximal clique in g, as long // as emit returns true. If emit returns false, BronKerbosch1 returns // immediately. // // There are equivalent labeled and unlabeled versions of this method. // // See also more sophisticated variants BronKerbosch2 and BronKerbosch3. func (g LabeledUndirected) BronKerbosch1(emit func(bits.Bits) bool) { a := g.LabeledAdjacencyList var f func(R, P, X bits.Bits) bool f = func(R, P, X bits.Bits) bool { switch { case !P.AllZeros(): r2 := bits.New(len(a)) p2 := bits.New(len(a)) x2 := bits.New(len(a)) pf := func(n int) bool { r2.Set(R) r2.SetBit(n, 1) p2.ClearAll() x2.ClearAll() for _, to := range a[n] { if P.Bit(int(to.To)) == 1 { p2.SetBit(int(to.To), 1) } if X.Bit(int(to.To)) == 1 { x2.SetBit(int(to.To), 1) } } if !f(r2, p2, x2) { return false } P.SetBit(n, 0) X.SetBit(n, 1) return true } if !P.IterateOnes(pf) { return false } case X.AllZeros(): return emit(R) } return true } var R, P, X bits.Bits R = bits.New(len(a)) P = bits.New(len(a)) X = bits.New(len(a)) P.SetAll() f(R, P, X) } // BKPivotMaxDegree is a strategy for BronKerbosch methods. // // To use it, take the method value (see golang.org/ref/spec#Method_values) // and pass it as the argument to BronKerbosch2 or 3. // // The strategy is to pick the node from P or X with the maximum degree // (number of edges) in g. Note this is a shortcut from evaluating degrees // in P. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) BKPivotMaxDegree(P, X bits.Bits) (p NI) { // choose pivot u as highest degree node from P or X a := g.LabeledAdjacencyList maxDeg := -1 P.IterateOnes(func(n int) bool { // scan P if d := len(a[n]); d > maxDeg { p = NI(n) maxDeg = d } return true }) X.IterateOnes(func(n int) bool { // scan X if d := len(a[n]); d > maxDeg { p = NI(n) maxDeg = d } return true }) return } // BKPivotMinP is a strategy for BronKerbosch methods. // // To use it, take the method value (see golang.org/ref/spec#Method_values) // and pass it as the argument to BronKerbosch2 or 3. // // The strategy is to simply pick the first node in P. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) BKPivotMinP(P, X bits.Bits) NI { return NI(P.OneFrom(0)) } // BronKerbosch2 finds maximal cliques in an undirected graph. // // The graph must not contain parallel edges or loops. // // See https://en.wikipedia.org/wiki/Clique_(graph_theory) and // https://en.wikipedia.org/wiki/Bron%E2%80%93Kerbosch_algorithm for background. // // This method implements the BronKerbosch2 algorithm of WP; that is, // the original algorithm plus pivoting. // // The argument is a pivot function that must return a node of P or X. // P is guaranteed to contain at least one node. X is not. // For example see BKPivotMaxDegree. // // The method calls the emit argument for each maximal clique in g, as long // as emit returns true. If emit returns false, BronKerbosch1 returns // immediately. // // There are equivalent labeled and unlabeled versions of this method. // // See also simpler variant BronKerbosch1 and more sophisticated variant // BronKerbosch3. func (g LabeledUndirected) BronKerbosch2(pivot func(P, X bits.Bits) NI, emit func(bits.Bits) bool) { a := g.LabeledAdjacencyList var f func(R, P, X bits.Bits) bool f = func(R, P, X bits.Bits) bool { switch { case !P.AllZeros(): r2 := bits.New(len(a)) p2 := bits.New(len(a)) x2 := bits.New(len(a)) pnu := bits.New(len(a)) // compute P \ N(u). next 5 lines are only difference from BK1 pnu.Set(P) for _, to := range a[pivot(P, X)] { pnu.SetBit(int(to.To), 0) } // remaining code like BK1 pf := func(n int) bool { r2.Set(R) r2.SetBit(n, 1) p2.ClearAll() x2.ClearAll() for _, to := range a[n] { if P.Bit(int(to.To)) == 1 { p2.SetBit(int(to.To), 1) } if X.Bit(int(to.To)) == 1 { x2.SetBit(int(to.To), 1) } } if !f(r2, p2, x2) { return false } P.SetBit(n, 0) X.SetBit(n, 1) return true } if !pnu.IterateOnes(pf) { return false } case X.AllZeros(): return emit(R) } return true } R := bits.New(len(a)) P := bits.New(len(a)) X := bits.New(len(a)) P.SetAll() f(R, P, X) } // BronKerbosch3 finds maximal cliques in an undirected graph. // // The graph must not contain parallel edges or loops. // // See https://en.wikipedia.org/wiki/Clique_(graph_theory) and // https://en.wikipedia.org/wiki/Bron%E2%80%93Kerbosch_algorithm for background. // // This method implements the BronKerbosch3 algorithm of WP; that is, // the original algorithm with pivoting and degeneracy ordering. // // The argument is a pivot function that must return a node of P or X. // P is guaranteed to contain at least one node. X is not. // For example see BKPivotMaxDegree. // // The method calls the emit argument for each maximal clique in g, as long // as emit returns true. If emit returns false, BronKerbosch1 returns // immediately. // // There are equivalent labeled and unlabeled versions of this method. // // See also simpler variants BronKerbosch1 and BronKerbosch2. func (g LabeledUndirected) BronKerbosch3(pivot func(P, X bits.Bits) NI, emit func(bits.Bits) bool) { a := g.LabeledAdjacencyList var f func(R, P, X bits.Bits) bool f = func(R, P, X bits.Bits) bool { switch { case !P.AllZeros(): r2 := bits.New(len(a)) p2 := bits.New(len(a)) x2 := bits.New(len(a)) pnu := bits.New(len(a)) // compute P \ N(u). next lines are only difference from BK1 pnu.Set(P) for _, to := range a[pivot(P, X)] { pnu.SetBit(int(to.To), 0) } // remaining code like BK2 pf := func(n int) bool { r2.Set(R) r2.SetBit(n, 1) p2.ClearAll() x2.ClearAll() for _, to := range a[n] { if P.Bit(int(to.To)) == 1 { p2.SetBit(int(to.To), 1) } if X.Bit(int(to.To)) == 1 { x2.SetBit(int(to.To), 1) } } if !f(r2, p2, x2) { return false } P.SetBit(n, 0) X.SetBit(n, 1) return true } if !pnu.IterateOnes(pf) { return false } case X.AllZeros(): return emit(R) } return true } R := bits.New(len(a)) P := bits.New(len(a)) X := bits.New(len(a)) P.SetAll() // code above same as BK2 // code below new to BK3 ord, _ := g.DegeneracyOrdering() p2 := bits.New(len(a)) x2 := bits.New(len(a)) for _, n := range ord { R.SetBit(int(n), 1) p2.ClearAll() x2.ClearAll() for _, to := range a[n] { if P.Bit(int(to.To)) == 1 { p2.SetBit(int(to.To), 1) } if X.Bit(int(to.To)) == 1 { x2.SetBit(int(to.To), 1) } } if !f(R, p2, x2) { return } R.SetBit(int(n), 0) P.SetBit(int(n), 0) X.SetBit(int(n), 1) } } // ConnectedComponentBits returns a function that iterates over connected // components of g, returning a member bitmap for each. // // Each call of the returned function returns the order, arc size, // and bits of a connected component. The underlying bits allocation is // the same for each call and is overwritten on subsequent calls. Use or // save the bits before calling the function again. The function returns // zeros after returning all connected components. // // There are equivalent labeled and unlabeled versions of this method. // // See also ConnectedComponentInts, ConnectedComponentReps, and // ConnectedComponentReps. func (g LabeledUndirected) ConnectedComponentBits() func() (order, arcSize int, bits bits.Bits) { a := g.LabeledAdjacencyList vg := bits.New(len(a)) // nodes visited in graph vc := bits.New(len(a)) // nodes visited in current component var order, arcSize int var df func(NI) df = func(n NI) { vg.SetBit(int(n), 1) vc.SetBit(int(n), 1) order++ arcSize += len(a[n]) for _, nb := range a[n] { if vg.Bit(int(nb.To)) == 0 { df(nb.To) } } return } var n int return func() (o, ma int, b bits.Bits) { for ; n < len(a); n++ { if vg.Bit(n) == 0 { vc.ClearAll() order, arcSize = 0, 0 df(NI(n)) return order, arcSize, vc } } return // return zeros signalling no more components } } // ConnectedComponenInts returns a list of component numbers (ints) for each // node of graph g. // // The method assigns numbers to components 1-based, 1 through the number of // components. Return value ci contains the component number for each node. // Return value nc is the number of components. // // There are equivalent labeled and unlabeled versions of this method. // // See also ConnectedComponentBits, ConnectedComponentLists, and // ConnectedComponentReps. func (g LabeledUndirected) ConnectedComponentInts() (ci []int, nc int) { a := g.LabeledAdjacencyList ci = make([]int, len(a)) var df func(NI) df = func(nd NI) { ci[nd] = nc for _, to := range a[nd] { if ci[to.To] == 0 { df(to.To) } } return } for nd := range a { if ci[nd] == 0 { nc++ df(NI(nd)) } } return } // ConnectedComponentLists returns a function that iterates over connected // components of g, returning the member list of each. // // Each call of the returned function returns a node list of a connected // component and the arc size of the component. The returned function returns // nil, 0 after returning all connected components. // // There are equivalent labeled and unlabeled versions of this method. // // See also ConnectedComponentBits, ConnectedComponentInts, and // ConnectedComponentReps. func (g LabeledUndirected) ConnectedComponentLists() func() (nodes []NI, arcSize int) { a := g.LabeledAdjacencyList vg := bits.New(len(a)) // nodes visited in graph var l []NI // accumulated node list of current component var ma int // accumulated arc size of current component var df func(NI) df = func(n NI) { vg.SetBit(int(n), 1) l = append(l, n) ma += len(a[n]) for _, nb := range a[n] { if vg.Bit(int(nb.To)) == 0 { df(nb.To) } } return } var n int return func() ([]NI, int) { for ; n < len(a); n++ { if vg.Bit(n) == 0 { l, ma = nil, 0 df(NI(n)) return l, ma } } return nil, 0 } } // ConnectedComponentReps returns a representative node from each connected // component of g. // // Returned is a slice with a single representative node from each connected // component and also parallel slices with the orders and arc sizes // in the corresponding components. // // This is fairly minimal information describing connected components. // From a representative node, other nodes in the component can be reached // by depth first traversal for example. // // There are equivalent labeled and unlabeled versions of this method. // // See also ConnectedComponentBits and ConnectedComponentLists which can // collect component members in a single traversal, and IsConnected which // is an even simpler boolean test. func (g LabeledUndirected) ConnectedComponentReps() (reps []NI, orders, arcSizes []int) { a := g.LabeledAdjacencyList c := bits.New(len(a)) var o, ma int var df func(NI) df = func(n NI) { c.SetBit(int(n), 1) o++ ma += len(a[n]) for _, nb := range a[n] { if c.Bit(int(nb.To)) == 0 { df(nb.To) } } return } for n := range a { if c.Bit(n) == 0 { o, ma = 0, 0 df(NI(n)) reps = append(reps, NI(n)) orders = append(orders, o) arcSizes = append(arcSizes, ma) } } return } // Copy makes a deep copy of g. // Copy also computes the arc size ma, the number of arcs. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) Copy() (c LabeledUndirected, ma int) { l, s := g.LabeledAdjacencyList.Copy() return LabeledUndirected{l}, s } // Degeneracy is a measure of dense subgraphs within a graph. // // See Wikipedia https://en.wikipedia.org/wiki/Degeneracy_(graph_theory) // // See also method DegeneracyOrdering which returns a degeneracy node // ordering and k-core breaks. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) Degeneracy() (k int) { a := g.LabeledAdjacencyList // WP algorithm, attributed to Matula and Beck. L := bits.New(len(a)) d := make([]int, len(a)) var D [][]NI for v, nb := range a { dv := len(nb) d[v] = dv for len(D) <= dv { D = append(D, nil) } D[dv] = append(D[dv], NI(v)) } for range a { // find a non-empty D i := 0 for len(D[i]) == 0 { i++ } // k is max(i, k) if i > k { k = i } // select from D[i] Di := D[i] last := len(Di) - 1 v := Di[last] // Add v to ordering, remove from Di L.SetBit(int(v), 1) D[i] = Di[:last] // move neighbors for _, nb := range a[v] { if L.Bit(int(nb.To)) == 1 { continue } dn := d[nb.To] // old number of neighbors of nb Ddn := D[dn] // nb is in this list // remove it from the list for wx, w := range Ddn { if w == nb.To { last := len(Ddn) - 1 Ddn[wx], Ddn[last] = Ddn[last], Ddn[wx] D[dn] = Ddn[:last] } } dn-- // new number of neighbors d[nb.To] = dn // re--add it to it's new list D[dn] = append(D[dn], nb.To) } } return } // DegeneracyOrdering computes degeneracy node ordering and k-core breaks. // // See Wikipedia https://en.wikipedia.org/wiki/Degeneracy_(graph_theory) // // In return value ordering, nodes are ordered by their "coreness" as // defined at https://en.wikipedia.org/wiki/Degeneracy_(graph_theory)#k-Cores. // // Return value kbreaks indexes ordering by coreness number. len(kbreaks) // will be one more than the graph degeneracy as returned by the Degeneracy // method. If degeneracy is d, d = len(kbreaks) - 1, kbreaks[d] is the last // value in kbreaks and ordering[:kbreaks[d]] contains nodes of the d-cores // of the graph. kbreaks[0] is always the number of nodes in g as all nodes // are in in a 0-core. // // Note that definitions of "k-core" differ on whether a k-core must be a // single connected component. This method does not resolve individual // connected components. // // See also method Degeneracy which returns just the degeneracy number. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) DegeneracyOrdering() (ordering []NI, kbreaks []int) { a := g.LabeledAdjacencyList // WP algorithm k := 0 ordering = make([]NI, len(a)) kbreaks = []int{len(a)} L := bits.New(len(a)) d := make([]int, len(a)) var D [][]NI for v, nb := range a { dv := len(nb) d[v] = dv for len(D) <= dv { D = append(D, nil) } D[dv] = append(D[dv], NI(v)) } for ox := len(a) - 1; ox >= 0; ox-- { // find a non-empty D i := 0 for len(D[i]) == 0 { i++ } // k is max(i, k) if i > k { for len(kbreaks) <= i { kbreaks = append(kbreaks, ox+1) } k = i } // select from D[i] Di := D[i] last := len(Di) - 1 v := Di[last] // Add v to ordering, remove from Di ordering[ox] = v L.SetBit(int(v), 1) D[i] = Di[:last] // move neighbors for _, nb := range a[v] { if L.Bit(int(nb.To)) == 1 { continue } dn := d[nb.To] // old number of neighbors of nb Ddn := D[dn] // nb is in this list // remove it from the list for wx, w := range Ddn { if w == nb.To { last := len(Ddn) - 1 Ddn[wx], Ddn[last] = Ddn[last], Ddn[wx] D[dn] = Ddn[:last] } } dn-- // new number of neighbors d[nb.To] = dn // re--add it to it's new list D[dn] = append(D[dn], nb.To) } } //for i, j := 0, k; i < j; i, j = i+1, j-1 { // kbreaks[i], kbreaks[j] = kbreaks[j], kbreaks[i] //} return } // Degree for undirected graphs, returns the degree of a node. // // The degree of a node in an undirected graph is the number of incident // edges, where loops count twice. // // If g is known to be loop-free, the result is simply equivalent to len(g[n]). // See handshaking lemma example at AdjacencyList.ArcSize. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) Degree(n NI) int { to := g.LabeledAdjacencyList[n] d := len(to) // just "out" degree, for _, to := range to { if to.To == n { d++ // except loops count twice } } return d } // DegreeCentralization returns the degree centralization metric of a graph. // // Degree of a node is one measure of node centrality and is directly // available from the adjacency list representation. This allows degree // centralization for the graph to be very efficiently computed. // // The value returned is from 0 to 1 inclusive for simple graphs of three or // more nodes. As a special case, 0 is returned for graphs of two or fewer // nodes. The value returned can be > 1 for graphs with loops or parallel // edges. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) DegreeCentralization() float64 { a := g.LabeledAdjacencyList if len(a) <= 2 { return 0 } var max, sum int for _, to := range a { if len(to) > max { max = len(to) } sum += len(to) } return float64(len(a)*max-sum) / float64((len(a)-1)*(len(a)-2)) } // Density returns density for a simple graph. // // See also Density function. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) Density() float64 { return Density(g.Order(), g.Size()) } // Eulerian scans an undirected graph to determine if it is Eulerian. // // If the graph represents an Eulerian cycle, it returns -1, -1, nil. // // If the graph does not represent an Eulerian cycle but does represent an // Eulerian path, it returns the two end nodes of the path, and nil. // // Otherwise it returns an error. // // See also method EulerianStart, which short-circuits as soon as it finds // a node that must be a start or end node of an Eulerian path. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) Eulerian() (end1, end2 NI, err error) { end1 = -1 end2 = -1 for n := range g.LabeledAdjacencyList { switch { case g.Degree(NI(n))%2 == 0: case end1 < 0: end1 = NI(n) case end2 < 0: end2 = NI(n) default: err = errors.New("non-Eulerian") return } } return } // EulerianCycle finds an Eulerian cycle in an undirected multigraph. // // * If g has no nodes, result is nil, nil. // // * If g is Eulerian, result is an Eulerian cycle with err = nil. // The first element of the result represents only a start node. // The remaining elements represent the half arcs of the cycle. // // * Otherwise, result is nil, with a non-nil error giving a reason the graph // is not Eulerian. // // Internally, EulerianCycle copies the entire graph g. // See EulerianCycleD for a more space efficient version. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) EulerianCycle() ([]Half, error) { c, _ := g.Copy() return c.EulerianCycleD(c.Size()) } // EulerianCycleD finds an Eulerian cycle in an undirected multigraph. // // EulerianCycleD is destructive on its receiver g. See EulerianCycle for // a non-destructive version. // // Parameter m must be the size of the undirected graph -- the // number of edges. Use Undirected.Size if the size is unknown. // // * If g has no nodes, result is nil, nil. // // * If g is Eulerian, result is an Eulerian cycle with err = nil. // The first element of the result represents only a start node. // The remaining elements represent the half arcs of the cycle. // // * Otherwise, result is nil, with a non-nil error giving a reason the graph // is not Eulerian. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) EulerianCycleD(m int) ([]Half, error) { if g.Order() == 0 { return nil, nil } e := newLabEulerian(g.LabeledAdjacencyList, m) e.p[0] = Half{0, -1} for e.s >= 0 { v := e.top() if err := e.pushUndir(); err != nil { return nil, err } if e.top().To != v.To { return nil, errors.New("not Eulerian") } e.keep() } if !e.uv.AllZeros() { return nil, errors.New("not strongly connected") } return e.p, nil } // EulerianPath finds an Eulerian path in an undirected multigraph. // // * If g has no nodes, result is nil, nil. // // * If g has an Eulerian path, result is an Eulerian path with err = nil. // The first element of the result represents only a start node. // The remaining elements represent the half arcs of the path. // // * Otherwise, result is nil, with a non-nil error giving a reason the graph // is not Eulerian. // // Internally, EulerianPath copies the entire graph g. // See EulerianPathD for a more space efficient version. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) EulerianPath() ([]Half, error) { c, _ := g.Copy() start := c.EulerianStart() if start < 0 { start = 0 } return c.EulerianPathD(c.Size(), start) } // EulerianPathD finds an Eulerian path in a undirected multigraph. // // EulerianPathD is destructive on its receiver g. See EulerianPath for // a non-destructive version. // // Argument m must be the correct size, or number of edges in g. // Argument start must be a valid start node for the path. // // * If g has no nodes, result is nil, nil. // // * If g has an Eulerian path starting at start, result is an Eulerian path // with err = nil. // The first element of the result represents only a start node. // The remaining elements represent the half arcs of the path. // // * Otherwise, result is nil, with a non-nil error giving a reason the graph // is not Eulerian. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) EulerianPathD(m int, start NI) ([]Half, error) { if g.Order() == 0 { return nil, nil } e := newLabEulerian(g.LabeledAdjacencyList, m) e.p[0] = Half{start, -1} // unlike EulerianCycle, the first path doesn't have to be a cycle. if err := e.pushUndir(); err != nil { return nil, err } e.keep() for e.s >= 0 { start = e.top().To e.push() // paths after the first must be cycles though // (as long as there are nodes on the stack) if e.top().To != start { return nil, errors.New("no Eulerian path") } e.keep() } if !e.uv.AllZeros() { return nil, errors.New("no Eulerian path") } return e.p, nil } // EulerianStart finds a candidate start node for an Eulerian path. // // A graph representing an Eulerian path can have two nodes with odd degree. // If it does, these must be the end nodes of the path. EulerianEnd scans // for a node with an odd degree, returning immediately with the first one // it finds. // // If the scan completes without finding a node with odd degree the method // returns -1. // // See also method Eulerian, which completely validates a graph as representing // an Eulerian path. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) EulerianStart() NI { for n := range g.LabeledAdjacencyList { if g.Degree(NI(n))%2 != 0 { return NI(n) } } return -1 } // AddNode maps a node in a supergraph to a subgraph node. // // Argument p must be an NI in supergraph s.Super. AddNode panics if // p is not a valid node index of s.Super. // // AddNode is idempotent in that it does not add a new node to the subgraph if // a subgraph node already exists mapped to supergraph node p. // // The mapped subgraph NI is returned. func (s *LabeledUndirectedSubgraph) AddNode(p NI) (b NI) { if int(p) < 0 || int(p) >= s.Super.Order() { panic(fmt.Sprint("AddNode: NI ", p, " not in supergraph")) } if b, ok := s.SubNI[p]; ok { return b } a := s.LabeledUndirected.LabeledAdjacencyList b = NI(len(a)) s.LabeledUndirected.LabeledAdjacencyList = append(a, nil) s.SuperNI = append(s.SuperNI, p) s.SubNI[p] = b return } // InduceList constructs a node-induced subgraph. // // The subgraph is induced on receiver graph g. Argument l must be a list of // NIs in receiver graph g. Receiver g becomes the supergraph of the induced // subgraph. // // Duplicate NIs are allowed in list l. The duplicates are effectively removed // and only a single corresponding node is created in the subgraph. Subgraph // NIs are mapped in the order of list l, execpt for ignoring duplicates. // NIs in l that are not in g will panic. // // Returned is the constructed Subgraph object containing the induced subgraph // and the mappings to the supergraph. func (g *LabeledUndirected) InduceList(l []NI) *LabeledUndirectedSubgraph { sub, sup := mapList(l) return &LabeledUndirectedSubgraph{ Super: g, SubNI: sub, SuperNI: sup, LabeledUndirected: LabeledUndirected{ g.LabeledAdjacencyList.induceArcs(sub, sup), }} } // InduceBits constructs a node-induced subgraph. // // The subgraph is induced on receiver graph g. Argument t must be a bitmap // representing NIs in receiver graph g. Receiver g becomes the supergraph // of the induced subgraph. NIs in t that are not in g will panic. // // Returned is the constructed Subgraph object containing the induced subgraph // and the mappings to the supergraph. func (g *LabeledUndirected) InduceBits(t bits.Bits) *LabeledUndirectedSubgraph { sub, sup := mapBits(t) return &LabeledUndirectedSubgraph{ Super: g, SubNI: sub, SuperNI: sup, LabeledUndirected: LabeledUndirected{ g.LabeledAdjacencyList.induceArcs(sub, sup), }} } // IsConnected tests if an undirected graph is a single connected component. // // There are equivalent labeled and unlabeled versions of this method. // // See also ConnectedComponentReps for a method returning more information. func (g LabeledUndirected) IsConnected() bool { a := g.LabeledAdjacencyList if len(a) == 0 { return true } b := bits.New(len(a)) var df func(NI) df = func(n NI) { b.SetBit(int(n), 1) for _, to := range a[n] { if b.Bit(int(to.To)) == 0 { df(to.To) } } } df(0) return b.AllOnes() } // IsTree identifies trees in undirected graphs. // // Return value isTree is true if the connected component reachable from root // is a tree. Further, return value allTree is true if the entire graph g is // connected. // // There are equivalent labeled and unlabeled versions of this method. func (g LabeledUndirected) IsTree(root NI) (isTree, allTree bool) { a := g.LabeledAdjacencyList v := bits.New(len(a)) v.SetAll() var df func(NI, NI) bool df = func(fr, n NI) bool { if v.Bit(int(n)) == 0 { return false } v.SetBit(int(n), 0) for _, to := range a[n] { if to.To != fr && !df(n, to.To) { return false } } return true } v.SetBit(int(root), 0) for _, to := range a[root] { if !df(root, to.To) { return false, false } } return true, v.AllZeros() } // Size returns the number of edges in g. // // See also ArcSize and AnyLoop. func (g LabeledUndirected) Size() int { m2 := 0 for fr, to := range g.LabeledAdjacencyList { m2 += len(to) for _, to := range to { if to.To == NI(fr) { m2++ } } } return m2 / 2 } // Density returns edge density of a bipartite graph. // // Edge density is number of edges over maximum possible number of edges. // Maximum possible number of edges in a bipartite graph is number of // nodes of one color times number of nodes of the other color. func (g LabeledBipartite) Density() float64 { a := g.LabeledUndirected.LabeledAdjacencyList s := 0 g.Color.IterateOnes(func(n int) bool { s += len(a[n]) return true }) return float64(s) / float64(g.N0*(len(a)-g.N0)) } // PermuteBiadjacency permutes a bipartite graph in place so that a prefix // of the adjacency list encodes a biadjacency matrix. // // The permutation applied is returned. This would be helpful in referencing // any externally stored node information. // // The biadjacency matrix is encoded as the prefix AdjacencyList[:g.N0]. // Note though that this slice does not represent a valid complete // AdjacencyList. BoundsOk would return false, for example. // // In adjacency list terms, the result of the permutation is that nodes of // the prefix only have arcs to the suffix and nodes of the suffix only have // arcs to the prefix. func (g LabeledBipartite) PermuteBiadjacency() []int { p := make([]int, g.Order()) i := 0 g.Color.IterateZeros(func(n int) bool { p[n] = i i++ return true }) g.Color.IterateOnes(func(n int) bool { p[n] = i i++ return true }) g.Permute(p) g.Color.ClearAll() for i := g.N0; i < g.Order(); i++ { g.Color.SetBit(i, 1) } return p }