Remove nsfwjs

Signed-off-by: eternal-flame-AD <yume@yumechi.jp>
This commit is contained in:
ゆめ 2024-12-23 02:32:39 -06:00
parent a83d13c143
commit fb68389b7e
No known key found for this signature in database
5 changed files with 37 additions and 1137 deletions

View file

@ -51,18 +51,18 @@
"lodash": "4.17.21"
},
"dependencies": {
"cross-env": "7.0.3",
"cssnano": "6.1.2",
"esbuild": "0.24.0",
"execa": "9.5.1",
"fast-glob": "3.3.2",
"glob": "11.0.0",
"ignore-walk": "6.0.5",
"js-yaml": "4.1.0",
"postcss": "8.4.49",
"tar": "6.2.1",
"terser": "5.36.0",
"typescript": "5.6.3",
"esbuild": "0.24.0",
"glob": "11.0.0",
"cross-env": "7.0.3"
"typescript": "5.6.3"
},
"devDependencies": {
"@misskey-dev/eslint-plugin": "2.0.3",
@ -74,8 +74,5 @@
"globals": "15.12.0",
"ncp": "2.0.0",
"start-server-and-test": "2.0.8"
},
"optionalDependencies": {
"@tensorflow/tfjs-core": "4.4.0"
}
}

View file

@ -48,8 +48,6 @@
"@swc/core-win32-arm64-msvc": "1.3.56",
"@swc/core-win32-ia32-msvc": "1.3.56",
"@swc/core-win32-x64-msvc": "1.3.56",
"@tensorflow/tfjs": "4.4.0",
"@tensorflow/tfjs-node": "4.4.0",
"bufferutil": "4.0.7",
"slacc-android-arm-eabi": "0.0.10",
"slacc-android-arm64": "0.0.10",
@ -146,7 +144,6 @@
"nested-property": "4.0.0",
"node-fetch": "3.3.2",
"nodemailer": "6.9.16",
"nsfwjs": "2.4.2",
"oauth": "0.10.0",
"oauth2orize": "1.12.0",
"oauth2orize-pkce": "0.1.2",

View file

@ -1,72 +0,0 @@
/*
* SPDX-FileCopyrightText: syuilo and misskey-project
* SPDX-License-Identifier: AGPL-3.0-only
*/
import * as fs from 'node:fs';
import { fileURLToPath } from 'node:url';
import { dirname } from 'node:path';
import { Injectable } from '@nestjs/common';
import * as nsfw from 'nsfwjs';
import si from 'systeminformation';
import { Mutex } from 'async-mutex';
import { bindThis } from '@/decorators.js';
const _filename = fileURLToPath(import.meta.url);
const _dirname = dirname(_filename);
const REQUIRED_CPU_FLAGS = ['avx2', 'fma'];
let isSupportedCpu: undefined | boolean = undefined;
@Injectable()
export class AiService {
private model: nsfw.NSFWJS;
private modelLoadMutex: Mutex = new Mutex();
constructor(
) {
}
@bindThis
public async detectSensitive(path: string): Promise<nsfw.predictionType[] | null> {
try {
if (isSupportedCpu === undefined) {
const cpuFlags = await this.getCpuFlags();
isSupportedCpu = REQUIRED_CPU_FLAGS.every(required => cpuFlags.includes(required));
}
if (!isSupportedCpu) {
console.error('This CPU cannot use TensorFlow.');
return null;
}
const tf = await import('@tensorflow/tfjs-node');
if (this.model == null) {
await this.modelLoadMutex.runExclusive(async () => {
if (this.model == null) {
this.model = await nsfw.load(`file://${_dirname}/../../nsfw-model/`, { size: 299 });
}
});
}
const buffer = await fs.promises.readFile(path);
const image = await tf.node.decodeImage(buffer, 3) as any;
try {
const predictions = await this.model.classify(image);
return predictions;
} finally {
image.dispose();
}
} catch (err) {
console.error(err);
return null;
}
}
@bindThis
private async getCpuFlags(): Promise<string[]> {
const str = await si.cpuFlags();
return str.split(/\s+/);
}
}

View file

@ -13,11 +13,8 @@ import * as fileType from 'file-type';
import FFmpeg from 'fluent-ffmpeg';
import isSvg from 'is-svg';
import probeImageSize from 'probe-image-size';
import { type predictionType } from 'nsfwjs';
import { sharpBmp } from '@misskey-dev/sharp-read-bmp';
import * as blurhash from 'blurhash';
import { createTempDir } from '@/misc/create-temp.js';
import { AiService } from '@/core/AiService.js';
import { LoggerService } from '@/core/LoggerService.js';
import type Logger from '@/logger.js';
import { bindThis } from '@/decorators.js';
@ -53,7 +50,6 @@ export class FileInfoService {
private logger: Logger;
constructor(
private aiService: AiService,
private loggerService: LoggerService,
) {
this.logger = this.loggerService.getLogger('file-info');
@ -167,102 +163,7 @@ export class FileInfoService {
@bindThis
private async detectSensitivity(source: string, mime: string, sensitiveThreshold: number, sensitiveThresholdForPorn: number, analyzeVideo: boolean): Promise<[sensitive: boolean, porn: boolean]> {
let sensitive = false;
let porn = false;
function judgePrediction(result: readonly predictionType[]): [sensitive: boolean, porn: boolean] {
let sensitive = false;
let porn = false;
if ((result.find(x => x.className === 'Sexy')?.probability ?? 0) > sensitiveThreshold) sensitive = true;
if ((result.find(x => x.className === 'Hentai')?.probability ?? 0) > sensitiveThreshold) sensitive = true;
if ((result.find(x => x.className === 'Porn')?.probability ?? 0) > sensitiveThreshold) sensitive = true;
if ((result.find(x => x.className === 'Porn')?.probability ?? 0) > sensitiveThresholdForPorn) porn = true;
return [sensitive, porn];
}
if ([
'image/jpeg',
'image/png',
'image/webp',
].includes(mime)) {
const result = await this.aiService.detectSensitive(source);
if (result) {
[sensitive, porn] = judgePrediction(result);
}
} else if (analyzeVideo && (mime === 'image/apng' || mime.startsWith('video/'))) {
const [outDir, disposeOutDir] = await createTempDir();
try {
const command = FFmpeg()
.input(source)
.inputOptions([
'-skip_frame', 'nokey', // 可能ならキーフレームのみを取得してほしいとする(そうなるとは限らない)
'-lowres', '3', // 元の画質でデコードする必要はないので 1/8 画質でデコードしてもよいとする(そうなるとは限らない)
])
.noAudio()
.videoFilters([
{
filter: 'select', // フレームのフィルタリング
options: {
e: 'eq(pict_type,PICT_TYPE_I)', // I-Frame のみをフィルタするVP9 とかはデコードしてみないとわからないっぽい)
},
},
{
filter: 'blackframe', // 暗いフレームの検出
options: {
amount: '0', // 暗さに関わらず全てのフレームで測定値を取る
},
},
{
filter: 'metadata',
options: {
mode: 'select', // フレーム選択モード
key: 'lavfi.blackframe.pblack', // フレームにおける暗部の百分率(前のフィルタからのメタデータを参照する)
value: '50',
function: 'less', // 50% 未満のフレームを選択する50% 以上暗部があるフレームだと誤検知を招くかもしれないので)
},
},
{
filter: 'scale',
options: {
w: 299,
h: 299,
},
},
])
.format('image2')
.output(join(outDir, '%d.png'))
.outputOptions(['-vsync', '0']); // 可変フレームレートにすることで穴埋めをさせない
const results: ReturnType<typeof judgePrediction>[] = [];
let frameIndex = 0;
let targetIndex = 0;
let nextIndex = 1;
for await (const path of this.asyncIterateFrames(outDir, command)) {
try {
const index = frameIndex++;
if (index !== targetIndex) {
continue;
}
targetIndex = nextIndex;
nextIndex += index; // fibonacci sequence によってフレーム数制限を掛ける
const result = await this.aiService.detectSensitive(path);
if (result) {
results.push(judgePrediction(result));
}
} finally {
fs.promises.unlink(path);
}
}
sensitive = results.filter(x => x[0]).length >= Math.ceil(results.length * sensitiveThreshold);
porn = results.filter(x => x[1]).length >= Math.ceil(results.length * sensitiveThresholdForPorn);
} finally {
disposeOutDir();
}
}
return [sensitive, porn];
return [false, false];
}
private async *asyncIterateFrames(cwd: string, command: FFmpeg.FfmpegCommand): AsyncGenerator<string, void> {

File diff suppressed because it is too large Load diff