768 lines
23 KiB
Go
768 lines
23 KiB
Go
|
// Copyright 2014 Sonia Keys
|
||
|
// License MIT: http://opensource.org/licenses/MIT
|
||
|
|
||
|
package graph
|
||
|
|
||
|
import (
|
||
|
"bytes"
|
||
|
"errors"
|
||
|
"fmt"
|
||
|
"math"
|
||
|
"reflect"
|
||
|
"text/template"
|
||
|
|
||
|
"github.com/soniakeys/bits"
|
||
|
)
|
||
|
|
||
|
// graph.go contains type definitions for all graph types and components.
|
||
|
// Also, go generate directives for source transformations.
|
||
|
//
|
||
|
// For readability, the types are defined in a dependency order:
|
||
|
//
|
||
|
// NI
|
||
|
// AdjacencyList
|
||
|
// Directed
|
||
|
// Undirected
|
||
|
// Bipartite
|
||
|
// Subgraph
|
||
|
// DirectedSubgraph
|
||
|
// UndirectedSubgraph
|
||
|
// LI
|
||
|
// Half
|
||
|
// fromHalf
|
||
|
// LabeledAdjacencyList
|
||
|
// LabeledDirected
|
||
|
// LabeledUndirected
|
||
|
// LabeledBipartite
|
||
|
// LabeledSubgraph
|
||
|
// LabeledDirectedSubgraph
|
||
|
// LabeledUndirectedSubgraph
|
||
|
// Edge
|
||
|
// LabeledEdge
|
||
|
// LabeledPath
|
||
|
// WeightFunc
|
||
|
// WeightedEdgeList
|
||
|
// TraverseOption
|
||
|
|
||
|
//go:generate cp adj_cg.go adj_RO.go
|
||
|
//go:generate gofmt -r "LabeledAdjacencyList -> AdjacencyList" -w adj_RO.go
|
||
|
//go:generate gofmt -r "n.To -> n" -w adj_RO.go
|
||
|
//go:generate gofmt -r "Half -> NI" -w adj_RO.go
|
||
|
//go:generate gofmt -r "LabeledSubgraph -> Subgraph" -w adj_RO.go
|
||
|
|
||
|
//go:generate cp dir_cg.go dir_RO.go
|
||
|
//go:generate gofmt -r "LabeledDirected -> Directed" -w dir_RO.go
|
||
|
//go:generate gofmt -r "LabeledDirectedSubgraph -> DirectedSubgraph" -w dir_RO.go
|
||
|
//go:generate gofmt -r "LabeledAdjacencyList -> AdjacencyList" -w dir_RO.go
|
||
|
//go:generate gofmt -r "labEulerian -> eulerian" -w dir_RO.go
|
||
|
//go:generate gofmt -r "newLabEulerian -> newEulerian" -w dir_RO.go
|
||
|
//go:generate gofmt -r "Half{n, -1} -> n" -w dir_RO.go
|
||
|
//go:generate gofmt -r "n.To -> n" -w dir_RO.go
|
||
|
//go:generate gofmt -r "Half -> NI" -w dir_RO.go
|
||
|
|
||
|
//go:generate cp undir_cg.go undir_RO.go
|
||
|
//go:generate gofmt -r "LabeledUndirected -> Undirected" -w undir_RO.go
|
||
|
//go:generate gofmt -r "LabeledBipartite -> Bipartite" -w undir_RO.go
|
||
|
//go:generate gofmt -r "LabeledUndirectedSubgraph -> UndirectedSubgraph" -w undir_RO.go
|
||
|
//go:generate gofmt -r "LabeledAdjacencyList -> AdjacencyList" -w undir_RO.go
|
||
|
//go:generate gofmt -r "newLabEulerian -> newEulerian" -w undir_RO.go
|
||
|
//go:generate gofmt -r "Half{n, -1} -> n" -w undir_RO.go
|
||
|
//go:generate gofmt -r "n.To -> n" -w undir_RO.go
|
||
|
//go:generate gofmt -r "Half -> NI" -w undir_RO.go
|
||
|
|
||
|
// An AdjacencyList represents a graph as a list of neighbors for each node.
|
||
|
// The "node ID" of a node is simply it's slice index in the AdjacencyList.
|
||
|
// For an AdjacencyList g, g[n] represents arcs going from node n to nodes
|
||
|
// g[n].
|
||
|
//
|
||
|
// Adjacency lists are inherently directed but can be used to represent
|
||
|
// directed or undirected graphs. See types Directed and Undirected.
|
||
|
type AdjacencyList [][]NI
|
||
|
|
||
|
// Directed represents a directed graph.
|
||
|
//
|
||
|
// Directed methods generally rely on the graph being directed, specifically
|
||
|
// that arcs do not have reciprocals.
|
||
|
type Directed struct {
|
||
|
AdjacencyList // embedded to include AdjacencyList methods
|
||
|
}
|
||
|
|
||
|
// Undirected represents an undirected graph.
|
||
|
//
|
||
|
// In an undirected graph, for each arc between distinct nodes there is also
|
||
|
// a reciprocal arc, an arc in the opposite direction. Loops do not have
|
||
|
// reciprocals.
|
||
|
//
|
||
|
// Undirected methods generally rely on the graph being undirected,
|
||
|
// specifically that every arc between distinct nodes has a reciprocal.
|
||
|
type Undirected struct {
|
||
|
AdjacencyList // embedded to include AdjacencyList methods
|
||
|
}
|
||
|
|
||
|
// Bipartite represents a bipartite graph.
|
||
|
//
|
||
|
// In a bipartite graph, nodes are partitioned into two sets, or
|
||
|
// "colors," such that every edge in the graph goes from one set to the
|
||
|
// other.
|
||
|
//
|
||
|
// Member Color represents the partition with a bitmap of length the same
|
||
|
// as the number of nodes in the graph. For convenience N0 stores the number
|
||
|
// of zero bits in Color.
|
||
|
//
|
||
|
// To construct a Bipartite object, if you can easily or efficiently use
|
||
|
// available information to construct the Color member, then you should do
|
||
|
// this and construct a Bipartite object with a Go struct literal.
|
||
|
//
|
||
|
// If partition information is not readily available, see the constructor
|
||
|
// Undirected.Bipartite.
|
||
|
//
|
||
|
// Alternatively, in some cases where the graph may have multiple connected
|
||
|
// components, the lower level Undirected.BipartiteComponent can be used to
|
||
|
// control color assignment by component.
|
||
|
type Bipartite struct {
|
||
|
Undirected
|
||
|
Color bits.Bits
|
||
|
N0 int
|
||
|
}
|
||
|
|
||
|
// Subgraph represents a subgraph mapped to a supergraph.
|
||
|
//
|
||
|
// The subgraph is the embedded AdjacencyList and so the Subgraph type inherits
|
||
|
// all methods of Adjacency list.
|
||
|
//
|
||
|
// The embedded subgraph mapped relative to a specific supergraph, member
|
||
|
// Super. A subgraph may have fewer nodes than its supergraph.
|
||
|
// Each node of the subgraph must map to a distinct node of the supergraph.
|
||
|
//
|
||
|
// The mapping giving the supergraph node for a given subgraph node is
|
||
|
// represented by member SuperNI, a slice parallel to the the subgraph.
|
||
|
//
|
||
|
// The mapping in the other direction, giving a subgraph NI for a given
|
||
|
// supergraph NI, is represented with map SubNI.
|
||
|
//
|
||
|
// Multiple Subgraphs can be created relative to a single supergraph.
|
||
|
// The Subgraph type represents a mapping to only a single supergraph however.
|
||
|
//
|
||
|
// See graph methods InduceList and InduceBits for construction of
|
||
|
// node-induced subgraphs.
|
||
|
//
|
||
|
// Alternatively an empty subgraph can be constructed with InduceList(nil).
|
||
|
// Arbitrary subgraphs can then be built up with methods AddNode and AddArc.
|
||
|
type Subgraph struct {
|
||
|
AdjacencyList // the subgraph
|
||
|
Super *AdjacencyList // the supergraph
|
||
|
SubNI map[NI]NI // subgraph NIs, indexed by supergraph NIs
|
||
|
SuperNI []NI // supergraph NIs indexed by subgraph NIs
|
||
|
}
|
||
|
|
||
|
// DirectedSubgraph represents a subgraph mapped to a supergraph.
|
||
|
//
|
||
|
// See additional doc at Subgraph type.
|
||
|
type DirectedSubgraph struct {
|
||
|
Directed
|
||
|
Super *Directed
|
||
|
SubNI map[NI]NI
|
||
|
SuperNI []NI
|
||
|
}
|
||
|
|
||
|
// UndirectedSubgraph represents a subgraph mapped to a supergraph.
|
||
|
//
|
||
|
// See additional doc at Subgraph type.
|
||
|
type UndirectedSubgraph struct {
|
||
|
Undirected
|
||
|
Super *Undirected
|
||
|
SubNI map[NI]NI
|
||
|
SuperNI []NI
|
||
|
}
|
||
|
|
||
|
// LI is a label integer, used for associating labels with arcs.
|
||
|
type LI int32
|
||
|
|
||
|
// Half is a half arc, representing a labeled arc and the "neighbor" node
|
||
|
// that the arc leads to.
|
||
|
//
|
||
|
// Halfs can be composed to form a labeled adjacency list.
|
||
|
type Half struct {
|
||
|
To NI // node ID, usable as a slice index
|
||
|
Label LI // half-arc ID for application data, often a weight
|
||
|
}
|
||
|
|
||
|
// fromHalf is a half arc, representing a labeled arc and the "neighbor" node
|
||
|
// that the arc originates from.
|
||
|
//
|
||
|
// This used internally in a couple of places. It used to be exported but is
|
||
|
// not currently needed anwhere in the API.
|
||
|
type fromHalf struct {
|
||
|
From NI
|
||
|
Label LI
|
||
|
}
|
||
|
|
||
|
// A LabeledAdjacencyList represents a graph as a list of neighbors for each
|
||
|
// node, connected by labeled arcs.
|
||
|
//
|
||
|
// Arc labels are not necessarily unique arc IDs. Different arcs can have
|
||
|
// the same label.
|
||
|
//
|
||
|
// Arc labels are commonly used to assocate a weight with an arc. Arc labels
|
||
|
// are general purpose however and can be used to associate arbitrary
|
||
|
// information with an arc.
|
||
|
//
|
||
|
// Methods implementing weighted graph algorithms will commonly take a
|
||
|
// weight function that turns a label int into a float64 weight.
|
||
|
//
|
||
|
// If only a small amount of information -- such as an integer weight or
|
||
|
// a single printable character -- needs to be associated, it can sometimes
|
||
|
// be possible to encode the information directly into the label int. For
|
||
|
// more generality, some lookup scheme will be needed.
|
||
|
//
|
||
|
// In an undirected labeled graph, reciprocal arcs must have identical labels.
|
||
|
// Note this does not preclude parallel arcs with different labels.
|
||
|
type LabeledAdjacencyList [][]Half
|
||
|
|
||
|
// LabeledDirected represents a directed labeled graph.
|
||
|
//
|
||
|
// This is the labeled version of Directed. See types LabeledAdjacencyList
|
||
|
// and Directed.
|
||
|
type LabeledDirected struct {
|
||
|
LabeledAdjacencyList // embedded to include LabeledAdjacencyList methods
|
||
|
}
|
||
|
|
||
|
// LabeledUndirected represents an undirected labeled graph.
|
||
|
//
|
||
|
// This is the labeled version of Undirected. See types LabeledAdjacencyList
|
||
|
// and Undirected.
|
||
|
type LabeledUndirected struct {
|
||
|
LabeledAdjacencyList // embedded to include LabeledAdjacencyList methods
|
||
|
}
|
||
|
|
||
|
// LabeledBipartite represents a bipartite graph.
|
||
|
//
|
||
|
// In a bipartite graph, nodes are partitioned into two sets, or
|
||
|
// "colors," such that every edge in the graph goes from one set to the
|
||
|
// other.
|
||
|
//
|
||
|
// Member Color represents the partition with a bitmap of length the same
|
||
|
// as the number of nodes in the graph. For convenience N0 stores the number
|
||
|
// of zero bits in Color.
|
||
|
//
|
||
|
// To construct a LabeledBipartite object, if you can easily or efficiently use
|
||
|
// available information to construct the Color member, then you should do
|
||
|
// this and construct a LabeledBipartite object with a Go struct literal.
|
||
|
//
|
||
|
// If partition information is not readily available, see the constructor
|
||
|
// Undirected.LabeledBipartite.
|
||
|
//
|
||
|
// Alternatively, in some cases where the graph may have multiple connected
|
||
|
// components, the lower level LabeledUndirected.BipartiteComponent can be used
|
||
|
// to control color assignment by component.
|
||
|
type LabeledBipartite struct {
|
||
|
LabeledUndirected
|
||
|
Color bits.Bits
|
||
|
N0 int
|
||
|
}
|
||
|
|
||
|
// LabeledSubgraph represents a subgraph mapped to a supergraph.
|
||
|
//
|
||
|
// See additional doc at Subgraph type.
|
||
|
type LabeledSubgraph struct {
|
||
|
LabeledAdjacencyList
|
||
|
Super *LabeledAdjacencyList
|
||
|
SubNI map[NI]NI
|
||
|
SuperNI []NI
|
||
|
}
|
||
|
|
||
|
// LabeledDirectedSubgraph represents a subgraph mapped to a supergraph.
|
||
|
//
|
||
|
// See additional doc at Subgraph type.
|
||
|
type LabeledDirectedSubgraph struct {
|
||
|
LabeledDirected
|
||
|
Super *LabeledDirected
|
||
|
SubNI map[NI]NI
|
||
|
SuperNI []NI
|
||
|
}
|
||
|
|
||
|
// LabeledUndirectedSubgraph represents a subgraph mapped to a supergraph.
|
||
|
//
|
||
|
// See additional doc at Subgraph type.
|
||
|
type LabeledUndirectedSubgraph struct {
|
||
|
LabeledUndirected
|
||
|
Super *LabeledUndirected
|
||
|
SubNI map[NI]NI
|
||
|
SuperNI []NI
|
||
|
}
|
||
|
|
||
|
// Edge is an undirected edge between nodes N1 and N2.
|
||
|
type Edge struct{ N1, N2 NI }
|
||
|
|
||
|
// LabeledEdge is an undirected edge with an associated label.
|
||
|
type LabeledEdge struct {
|
||
|
Edge
|
||
|
LI
|
||
|
}
|
||
|
|
||
|
// LabeledPath is a start node and a path of half arcs leading from start.
|
||
|
type LabeledPath struct {
|
||
|
Start NI
|
||
|
Path []Half
|
||
|
}
|
||
|
|
||
|
// Distance returns total path distance given WeightFunc w.
|
||
|
func (p LabeledPath) Distance(w WeightFunc) float64 {
|
||
|
d := 0.
|
||
|
for _, h := range p.Path {
|
||
|
d += w(h.Label)
|
||
|
}
|
||
|
return d
|
||
|
}
|
||
|
|
||
|
// WeightFunc returns a weight for a given label.
|
||
|
//
|
||
|
// WeightFunc is a parameter type for various search functions. The intent
|
||
|
// is to return a weight corresponding to an arc label. The name "weight"
|
||
|
// is an abstract term. An arc "weight" will typically have some application
|
||
|
// specific meaning other than physical weight.
|
||
|
type WeightFunc func(label LI) (weight float64)
|
||
|
|
||
|
// WeightedEdgeList is a graph representation.
|
||
|
//
|
||
|
// It is a labeled edge list, with an associated weight function to return
|
||
|
// a weight given an edge label.
|
||
|
//
|
||
|
// Also associated is the order, or number of nodes of the graph.
|
||
|
// All nodes occurring in the edge list must be strictly less than Order.
|
||
|
//
|
||
|
// WeigtedEdgeList sorts by weight, obtained by calling the weight function.
|
||
|
// If weight computation is expensive, consider supplying a cached or
|
||
|
// memoized version.
|
||
|
type WeightedEdgeList struct {
|
||
|
Order int
|
||
|
WeightFunc
|
||
|
Edges []LabeledEdge
|
||
|
}
|
||
|
|
||
|
// DistanceMatrix constructs a distance matrix corresponding to the weighted
|
||
|
// edges of l.
|
||
|
//
|
||
|
// An edge n1, n2 with WeightFunc return w is represented by both
|
||
|
// d[n1][n2] == w and d[n2][n1] = w. In case of parallel edges, the lowest
|
||
|
// weight is stored. The distance from any node to itself d[n][n] is 0, unless
|
||
|
// the node has a loop with a negative weight. If g has no edge between n1 and
|
||
|
// distinct n2, +Inf is stored for d[n1][n2] and d[n2][n1].
|
||
|
//
|
||
|
// The returned DistanceMatrix is suitable for DistanceMatrix.FloydWarshall.
|
||
|
func (l WeightedEdgeList) DistanceMatrix() (d DistanceMatrix) {
|
||
|
d = newDM(l.Order)
|
||
|
for _, e := range l.Edges {
|
||
|
n1 := e.Edge.N1
|
||
|
n2 := e.Edge.N2
|
||
|
wt := l.WeightFunc(e.LI)
|
||
|
// < to pick min of parallel arcs (also nicely ignores NaN)
|
||
|
if wt < d[n1][n2] {
|
||
|
d[n1][n2] = wt
|
||
|
d[n2][n1] = wt
|
||
|
}
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// A DistanceMatrix is a square matrix representing some distance between
|
||
|
// nodes of a graph. If the graph is directected, d[from][to] represents
|
||
|
// some distance from node 'from' to node 'to'. Depending on context, the
|
||
|
// distance may be an arc weight or path distance. A value of +Inf typically
|
||
|
// means no arc or no path between the nodes.
|
||
|
type DistanceMatrix [][]float64
|
||
|
|
||
|
// little helper function, makes a blank distance matrix for FloydWarshall.
|
||
|
// could be exported?
|
||
|
func newDM(n int) DistanceMatrix {
|
||
|
inf := math.Inf(1)
|
||
|
d := make(DistanceMatrix, n)
|
||
|
for i := range d {
|
||
|
di := make([]float64, n)
|
||
|
for j := range di {
|
||
|
di[j] = inf
|
||
|
}
|
||
|
di[i] = 0
|
||
|
d[i] = di
|
||
|
}
|
||
|
return d
|
||
|
}
|
||
|
|
||
|
// FloydWarshall finds all pairs shortest distances for a weighted graph
|
||
|
// without negative cycles.
|
||
|
//
|
||
|
// It operates on a distance matrix representing arcs of a graph and
|
||
|
// destructively replaces arc weights with shortest path distances.
|
||
|
//
|
||
|
// In receiver d, d[fr][to] will be the shortest distance from node
|
||
|
// 'fr' to node 'to'. An element value of +Inf means no path exists.
|
||
|
// Any diagonal element < 0 indicates a negative cycle exists.
|
||
|
//
|
||
|
// See DistanceMatrix constructor methods of LabeledAdjacencyList and
|
||
|
// WeightedEdgeList for suitable inputs.
|
||
|
func (d DistanceMatrix) FloydWarshall() {
|
||
|
for k, dk := range d {
|
||
|
for _, di := range d {
|
||
|
dik := di[k]
|
||
|
for j := range d {
|
||
|
if d2 := dik + dk[j]; d2 < di[j] {
|
||
|
di[j] = d2
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// PathMatrix is a return type for FloydWarshallPaths.
|
||
|
//
|
||
|
// It encodes all pairs shortest paths.
|
||
|
type PathMatrix [][]NI
|
||
|
|
||
|
// Path returns a shortest path from node start to end.
|
||
|
//
|
||
|
// Argument p is truncated, appended to, and returned as the result.
|
||
|
// Thus the underlying allocation is reused if possible.
|
||
|
// If there is no path from start to end, p is returned truncated to
|
||
|
// zero length.
|
||
|
//
|
||
|
// If receiver m is not a valid populated PathMatrix as returned by
|
||
|
// FloydWarshallPaths, behavior is undefined and a panic is likely.
|
||
|
func (m PathMatrix) Path(start, end NI, p []NI) []NI {
|
||
|
p = p[:0]
|
||
|
for {
|
||
|
p = append(p, start)
|
||
|
if start == end {
|
||
|
return p
|
||
|
}
|
||
|
start = m[start][end]
|
||
|
if start < 0 {
|
||
|
return p[:0]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// FloydWarshallPaths finds all pairs shortest paths for a weighted graph
|
||
|
// without negative cycles.
|
||
|
//
|
||
|
// It operates on a distance matrix representing arcs of a graph and
|
||
|
// destructively replaces arc weights with shortest path distances.
|
||
|
//
|
||
|
// In receiver d, d[fr][to] will be the shortest distance from node
|
||
|
// 'fr' to node 'to'. An element value of +Inf means no path exists.
|
||
|
// Any diagonal element < 0 indicates a negative cycle exists.
|
||
|
//
|
||
|
// The return value encodes the paths. See PathMatrix.Path.
|
||
|
//
|
||
|
// See DistanceMatrix constructor methods of LabeledAdjacencyList and
|
||
|
// WeightedEdgeList for suitable inputs.
|
||
|
//
|
||
|
// See also similar method FloydWarshallFromLists which has a richer
|
||
|
// return value.
|
||
|
func (d DistanceMatrix) FloydWarshallPaths() PathMatrix {
|
||
|
m := make(PathMatrix, len(d))
|
||
|
inf := math.Inf(1)
|
||
|
for i, di := range d {
|
||
|
mi := make([]NI, len(d))
|
||
|
for j, dij := range di {
|
||
|
if dij == inf {
|
||
|
mi[j] = -1
|
||
|
} else {
|
||
|
mi[j] = NI(j)
|
||
|
}
|
||
|
}
|
||
|
m[i] = mi
|
||
|
}
|
||
|
for k, dk := range d {
|
||
|
for i, di := range d {
|
||
|
mi := m[i]
|
||
|
dik := di[k]
|
||
|
for j := range d {
|
||
|
if d2 := dik + dk[j]; d2 < di[j] {
|
||
|
di[j] = d2
|
||
|
mi[j] = mi[k]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return m
|
||
|
}
|
||
|
|
||
|
// FloydWarshallFromLists finds all pairs shortest paths for a weighted
|
||
|
// graph without negative cycles.
|
||
|
//
|
||
|
// It operates on a distance matrix representing arcs of a graph and
|
||
|
// destructively replaces arc weights with shortest path distances.
|
||
|
//
|
||
|
// In receiver d, d[fr][to] will be the shortest distance from node
|
||
|
// 'fr' to node 'to'. An element value of +Inf means no path exists.
|
||
|
// Any diagonal element < 0 indicates a negative cycle exists.
|
||
|
//
|
||
|
// The return value encodes the paths. The FromLists are fully populated
|
||
|
// with Leaves and Len values. See for example FromList.PathTo for
|
||
|
// extracting paths. Note though that for i'th FromList of the return
|
||
|
// value, PathTo(j) will return the path from j's root, which will not
|
||
|
// be i in the case that there is no path from i to j. You must check
|
||
|
// the first node of the path to see if it is i. If not, there is no
|
||
|
// path from i to j. See example.
|
||
|
//
|
||
|
// See DistanceMatrix constructor methods of LabeledAdjacencyList and
|
||
|
// WeightedEdgeList for suitable inputs.
|
||
|
//
|
||
|
// See also similar method FloydWarshallPaths, which has a lighter
|
||
|
// weight return value.
|
||
|
func (d DistanceMatrix) FloydWarshallFromLists() []FromList {
|
||
|
l := make([]FromList, len(d))
|
||
|
inf := math.Inf(1)
|
||
|
for i, di := range d {
|
||
|
li := NewFromList(len(d))
|
||
|
p := li.Paths
|
||
|
for j, dij := range di {
|
||
|
if i == j || dij == inf {
|
||
|
p[j] = PathEnd{From: -1}
|
||
|
} else {
|
||
|
p[j] = PathEnd{From: NI(i)}
|
||
|
}
|
||
|
}
|
||
|
l[i] = li
|
||
|
}
|
||
|
for k, dk := range d {
|
||
|
pk := l[k].Paths
|
||
|
for i, di := range d {
|
||
|
dik := di[k]
|
||
|
pi := l[i].Paths
|
||
|
for j := range d {
|
||
|
if d2 := dik + dk[j]; d2 < di[j] {
|
||
|
di[j] = d2
|
||
|
pi[j] = pk[j]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for _, li := range l {
|
||
|
li.RecalcLeaves()
|
||
|
li.RecalcLen()
|
||
|
}
|
||
|
return l
|
||
|
}
|
||
|
|
||
|
// AddEdge adds an edge to a subgraph.
|
||
|
//
|
||
|
// For argument e, e.N1 and e.N2 must be NIs in supergraph s.Super. As with
|
||
|
// AddNode, AddEdge panics if e.N1 and e.N2 are not valid node indexes of
|
||
|
// s.Super.
|
||
|
//
|
||
|
// Edge e must exist in s.Super. Further, the number of
|
||
|
// parallel edges in the subgraph cannot exceed the number of corresponding
|
||
|
// parallel edges in the supergraph. That is, each edge already added to the
|
||
|
// subgraph counts against the edges available in the supergraph. If a matching
|
||
|
// edge is not available, AddEdge returns an error.
|
||
|
//
|
||
|
// If a matching edge is available, subgraph nodes are added as needed, the
|
||
|
// subgraph edge is added, and the method returns nil.
|
||
|
func (s *UndirectedSubgraph) AddEdge(n1, n2 NI) error {
|
||
|
// verify supergraph NIs first, but without adding subgraph nodes just yet.
|
||
|
if int(n1) < 0 || int(n1) >= s.Super.Order() {
|
||
|
panic(fmt.Sprint("AddEdge: NI ", n1, " not in supergraph"))
|
||
|
}
|
||
|
if int(n2) < 0 || int(n2) >= s.Super.Order() {
|
||
|
panic(fmt.Sprint("AddEdge: NI ", n2, " not in supergraph"))
|
||
|
}
|
||
|
// count existing matching edges in subgraph
|
||
|
n := 0
|
||
|
a := s.Undirected.AdjacencyList
|
||
|
if b1, ok := s.SubNI[n1]; ok {
|
||
|
if b2, ok := s.SubNI[n2]; ok {
|
||
|
// both NIs already exist in subgraph, need to count edges
|
||
|
for _, t := range a[b1] {
|
||
|
if t == b2 {
|
||
|
n++
|
||
|
}
|
||
|
}
|
||
|
if b1 != b2 {
|
||
|
// verify reciprocal arcs exist
|
||
|
r := 0
|
||
|
for _, t := range a[b2] {
|
||
|
if t == b1 {
|
||
|
r++
|
||
|
}
|
||
|
}
|
||
|
if r < n {
|
||
|
n = r
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// verify matching edges are available in supergraph
|
||
|
m := 0
|
||
|
for _, t := range (*s.Super).AdjacencyList[n1] {
|
||
|
if t == n2 {
|
||
|
if m == n {
|
||
|
goto r // arc match after all existing arcs matched
|
||
|
}
|
||
|
m++
|
||
|
}
|
||
|
}
|
||
|
return errors.New("edge not available in supergraph")
|
||
|
r:
|
||
|
if n1 != n2 {
|
||
|
// verify reciprocal arcs
|
||
|
m = 0
|
||
|
for _, t := range (*s.Super).AdjacencyList[n2] {
|
||
|
if t == n1 {
|
||
|
if m == n {
|
||
|
goto good
|
||
|
}
|
||
|
m++
|
||
|
}
|
||
|
}
|
||
|
return errors.New("edge not available in supergraph")
|
||
|
}
|
||
|
good:
|
||
|
// matched enough edges. nodes can finally
|
||
|
// be added as needed and then the edge can be added.
|
||
|
b1 := s.AddNode(n1)
|
||
|
b2 := s.AddNode(n2)
|
||
|
s.Undirected.AddEdge(b1, b2)
|
||
|
return nil // success
|
||
|
}
|
||
|
|
||
|
// AddEdge adds an edge to a subgraph.
|
||
|
//
|
||
|
// For argument e, e.N1 and e.N2 must be NIs in supergraph s.Super. As with
|
||
|
// AddNode, AddEdge panics if e.N1 and e.N2 are not valid node indexes of
|
||
|
// s.Super.
|
||
|
//
|
||
|
// Edge e must exist in s.Super with label l. Further, the number of
|
||
|
// parallel edges in the subgraph cannot exceed the number of corresponding
|
||
|
// parallel edges in the supergraph. That is, each edge already added to the
|
||
|
// subgraph counts against the edges available in the supergraph. If a matching
|
||
|
// edge is not available, AddEdge returns an error.
|
||
|
//
|
||
|
// If a matching edge is available, subgraph nodes are added as needed, the
|
||
|
// subgraph edge is added, and the method returns nil.
|
||
|
func (s *LabeledUndirectedSubgraph) AddEdge(e Edge, l LI) error {
|
||
|
// verify supergraph NIs first, but without adding subgraph nodes just yet.
|
||
|
if int(e.N1) < 0 || int(e.N1) >= s.Super.Order() {
|
||
|
panic(fmt.Sprint("AddEdge: NI ", e.N1, " not in supergraph"))
|
||
|
}
|
||
|
if int(e.N2) < 0 || int(e.N2) >= s.Super.Order() {
|
||
|
panic(fmt.Sprint("AddEdge: NI ", e.N2, " not in supergraph"))
|
||
|
}
|
||
|
// count existing matching edges in subgraph
|
||
|
n := 0
|
||
|
a := s.LabeledUndirected.LabeledAdjacencyList
|
||
|
if b1, ok := s.SubNI[e.N1]; ok {
|
||
|
if b2, ok := s.SubNI[e.N2]; ok {
|
||
|
// both NIs already exist in subgraph, need to count edges
|
||
|
h := Half{b2, l}
|
||
|
for _, t := range a[b1] {
|
||
|
if t == h {
|
||
|
n++
|
||
|
}
|
||
|
}
|
||
|
if b1 != b2 {
|
||
|
// verify reciprocal arcs exist
|
||
|
r := 0
|
||
|
h.To = b1
|
||
|
for _, t := range a[b2] {
|
||
|
if t == h {
|
||
|
r++
|
||
|
}
|
||
|
}
|
||
|
if r < n {
|
||
|
n = r
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// verify matching edges are available in supergraph
|
||
|
m := 0
|
||
|
h := Half{e.N2, l}
|
||
|
for _, t := range (*s.Super).LabeledAdjacencyList[e.N1] {
|
||
|
if t == h {
|
||
|
if m == n {
|
||
|
goto r // arc match after all existing arcs matched
|
||
|
}
|
||
|
m++
|
||
|
}
|
||
|
}
|
||
|
return errors.New("edge not available in supergraph")
|
||
|
r:
|
||
|
if e.N1 != e.N2 {
|
||
|
// verify reciprocal arcs
|
||
|
m = 0
|
||
|
h.To = e.N1
|
||
|
for _, t := range (*s.Super).LabeledAdjacencyList[e.N2] {
|
||
|
if t == h {
|
||
|
if m == n {
|
||
|
goto good
|
||
|
}
|
||
|
m++
|
||
|
}
|
||
|
}
|
||
|
return errors.New("edge not available in supergraph")
|
||
|
}
|
||
|
good:
|
||
|
// matched enough edges. nodes can finally
|
||
|
// be added as needed and then the edge can be added.
|
||
|
n1 := s.AddNode(e.N1)
|
||
|
n2 := s.AddNode(e.N2)
|
||
|
s.LabeledUndirected.AddEdge(Edge{n1, n2}, l)
|
||
|
return nil // success
|
||
|
}
|
||
|
|
||
|
// utility function called from all of the InduceList methods.
|
||
|
func mapList(l []NI) (sub map[NI]NI, sup []NI) {
|
||
|
sub = map[NI]NI{}
|
||
|
// one pass to collect unique NIs
|
||
|
for _, p := range l {
|
||
|
sub[NI(p)] = -1
|
||
|
}
|
||
|
if len(sub) == len(l) { // NIs in l are unique
|
||
|
sup = append([]NI{}, l...) // just copy them
|
||
|
for b, p := range l {
|
||
|
sub[p] = NI(b) // and fill in map
|
||
|
}
|
||
|
} else { // NIs in l not unique
|
||
|
sup = make([]NI, 0, len(sub))
|
||
|
for _, p := range l { // preserve ordering of first occurrences in l
|
||
|
if sub[p] < 0 {
|
||
|
sub[p] = NI(len(sup))
|
||
|
sup = append(sup, p)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// utility function called from all of the InduceBits methods.
|
||
|
func mapBits(t bits.Bits) (sub map[NI]NI, sup []NI) {
|
||
|
sup = make([]NI, 0, t.OnesCount())
|
||
|
sub = make(map[NI]NI, cap(sup))
|
||
|
t.IterateOnes(func(n int) bool {
|
||
|
sub[NI(n)] = NI(len(sup))
|
||
|
sup = append(sup, NI(n))
|
||
|
return true
|
||
|
})
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// OrderMap formats maps for testable examples.
|
||
|
//
|
||
|
// OrderMap provides simple, no-frills formatting of maps in sorted order,
|
||
|
// convenient in some cases for output of testable examples.
|
||
|
func OrderMap(m interface{}) string {
|
||
|
// in particular exclude slices, which template would happily accept but
|
||
|
// which would probably represent a coding mistake
|
||
|
if reflect.TypeOf(m).Kind() != reflect.Map {
|
||
|
panic("not a map")
|
||
|
}
|
||
|
t := template.Must(template.New("").Parse(
|
||
|
`map[{{range $k, $v := .}}{{$k}}:{{$v}} {{end}}]`))
|
||
|
var b bytes.Buffer
|
||
|
if err := t.Execute(&b, m); err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
return b.String()
|
||
|
}
|