1092 lines
31 KiB
Go
1092 lines
31 KiB
Go
|
// Copyright 2014 Sonia Keys
|
||
|
// License MIT: http://opensource.org/licenses/MIT
|
||
|
|
||
|
package graph
|
||
|
|
||
|
import (
|
||
|
"errors"
|
||
|
"fmt"
|
||
|
|
||
|
"github.com/soniakeys/bits"
|
||
|
)
|
||
|
|
||
|
// dir_RO.go is code generated from dir_cg.go by directives in graph.go.
|
||
|
// Editing dir_cg.go is okay. It is the code generation source.
|
||
|
// DO NOT EDIT dir_RO.go.
|
||
|
// The RO means read only and it is upper case RO to slow you down a bit
|
||
|
// in case you start to edit the file.
|
||
|
|
||
|
// Balanced returns true if for every node in g, in-degree equals out-degree.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) Balanced() bool {
|
||
|
for n, in := range g.InDegree() {
|
||
|
if in != len(g.LabeledAdjacencyList[n]) {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
// Copy makes a deep copy of g.
|
||
|
// Copy also computes the arc size ma, the number of arcs.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) Copy() (c LabeledDirected, ma int) {
|
||
|
l, s := g.LabeledAdjacencyList.Copy()
|
||
|
return LabeledDirected{l}, s
|
||
|
}
|
||
|
|
||
|
// Cyclic determines if g contains a cycle, a non-empty path from a node
|
||
|
// back to itself.
|
||
|
//
|
||
|
// Cyclic returns true if g contains at least one cycle. It also returns
|
||
|
// an example of an arc involved in a cycle.
|
||
|
// Cyclic returns false if g is acyclic.
|
||
|
//
|
||
|
// Also see Topological, which detects cycles.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) Cyclic() (cyclic bool, fr NI, to Half) {
|
||
|
a := g.LabeledAdjacencyList
|
||
|
fr, to.To = -1, -1
|
||
|
temp := bits.New(len(a))
|
||
|
perm := bits.New(len(a))
|
||
|
var df func(int)
|
||
|
df = func(n int) {
|
||
|
switch {
|
||
|
case temp.Bit(n) == 1:
|
||
|
cyclic = true
|
||
|
return
|
||
|
case perm.Bit(n) == 1:
|
||
|
return
|
||
|
}
|
||
|
temp.SetBit(n, 1)
|
||
|
for _, nb := range a[n] {
|
||
|
df(int(nb.To))
|
||
|
if cyclic {
|
||
|
if fr < 0 {
|
||
|
fr, to = NI(n), nb
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
temp.SetBit(n, 0)
|
||
|
perm.SetBit(n, 1)
|
||
|
}
|
||
|
for n := range a {
|
||
|
if perm.Bit(n) == 1 {
|
||
|
continue
|
||
|
}
|
||
|
if df(n); cyclic { // short circuit as soon as a cycle is found
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// DegreeCentralization returns out-degree centralization.
|
||
|
//
|
||
|
// Out-degree of a node is one measure of node centrality and is directly
|
||
|
// available from the adjacency list representation. This allows degree
|
||
|
// centralization for the graph to be very efficiently computed.
|
||
|
//
|
||
|
// The value returned is from 0 to 1 inclusive for simple directed graphs of
|
||
|
// two or more nodes. As a special case, 0 is returned for graphs of 0 or 1
|
||
|
// nodes. The value returned can be > 1 for graphs with loops or parallel
|
||
|
// edges.
|
||
|
//
|
||
|
// In-degree centralization can be computed as DegreeCentralization of the
|
||
|
// transpose.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) DegreeCentralization() float64 {
|
||
|
a := g.LabeledAdjacencyList
|
||
|
if len(a) <= 1 {
|
||
|
return 0
|
||
|
}
|
||
|
var max, sum int
|
||
|
for _, to := range a {
|
||
|
if len(to) > max {
|
||
|
max = len(to)
|
||
|
}
|
||
|
sum += len(to)
|
||
|
}
|
||
|
l1 := len(a) - 1
|
||
|
return float64(len(a)*max-sum) / float64(l1*l1)
|
||
|
}
|
||
|
|
||
|
// Dominators computes the immediate dominator for each node reachable from
|
||
|
// start.
|
||
|
//
|
||
|
// The slice returned as Dominators.Immediate will have the length of
|
||
|
// g.AdjacencyList. Nodes without a path to end will have a value of -1.
|
||
|
//
|
||
|
// See also the method Doms. Internally Dominators must construct the
|
||
|
// transpose of g and also compute a postordering of a spanning tree of the
|
||
|
// subgraph reachable from start. If you happen to have either of these
|
||
|
// computed anyway, it can be more efficient to call Doms directly.
|
||
|
func (g LabeledDirected) Dominators(start NI) Dominators {
|
||
|
a := g.LabeledAdjacencyList
|
||
|
l := len(a)
|
||
|
// ExampleDoms shows traditional depth-first postorder, but it works to
|
||
|
// generate a reverse preorder. Also breadth-first works instead of
|
||
|
// depth-first and may allow Doms to run a little faster by presenting
|
||
|
// a shallower tree.
|
||
|
post := make([]NI, l)
|
||
|
a.BreadthFirst(start, func(n NI) {
|
||
|
l--
|
||
|
post[l] = n
|
||
|
})
|
||
|
tr, _ := g.Transpose()
|
||
|
return g.Doms(tr, post[l:])
|
||
|
}
|
||
|
|
||
|
// Doms computes either immediate dominators or postdominators.
|
||
|
//
|
||
|
// The slice returned as Dominators.Immediate will have the length of
|
||
|
// g.AdjacencyList. Nodes without a path to end will have a value of -1.
|
||
|
//
|
||
|
// But see also the simpler methods Dominators and PostDominators.
|
||
|
//
|
||
|
// Doms requires argument tr to be the transpose graph of receiver g,
|
||
|
// and requres argument post to be a post ordering of receiver g. More
|
||
|
// specifically a post ordering of a spanning tree of the subgraph reachable
|
||
|
// from some start node in g. The start node will always be the last node in
|
||
|
// this postordering so it does not need to passed as a separate argument.
|
||
|
//
|
||
|
// Doms can be used to construct either dominators or postdominators.
|
||
|
// To construct dominators on a graph f, generate a postordering p on f
|
||
|
// and call f.Doms(f.Transpose(), p). To construct postdominators, generate
|
||
|
// the transpose t first, then a postordering p on t (not f), and call
|
||
|
// t.Doms(f, p).
|
||
|
//
|
||
|
// Caution: The argument tr is retained in the returned Dominators object
|
||
|
// and is used by the method Dominators.Frontier. It is not deep-copied
|
||
|
// so it is invalid to call Doms, modify the tr graph, and then call Frontier.
|
||
|
func (g LabeledDirected) Doms(tr LabeledDirected, post []NI) Dominators {
|
||
|
a := g.LabeledAdjacencyList
|
||
|
dom := make([]NI, len(a))
|
||
|
pi := make([]int, len(a))
|
||
|
for i, n := range post {
|
||
|
pi[n] = i
|
||
|
}
|
||
|
intersect := func(b1, b2 NI) NI {
|
||
|
for b1 != b2 {
|
||
|
for pi[b1] < pi[b2] {
|
||
|
b1 = dom[b1]
|
||
|
}
|
||
|
for pi[b2] < pi[b1] {
|
||
|
b2 = dom[b2]
|
||
|
}
|
||
|
}
|
||
|
return b1
|
||
|
}
|
||
|
for n := range dom {
|
||
|
dom[n] = -1
|
||
|
}
|
||
|
start := post[len(post)-1]
|
||
|
dom[start] = start
|
||
|
for changed := false; ; changed = false {
|
||
|
for i := len(post) - 2; i >= 0; i-- {
|
||
|
b := post[i]
|
||
|
var im NI
|
||
|
fr := tr.LabeledAdjacencyList[b]
|
||
|
var j int
|
||
|
var fp Half
|
||
|
for j, fp = range fr {
|
||
|
if dom[fp.To] >= 0 {
|
||
|
im = fp.To
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
for _, p := range fr[j:] {
|
||
|
if dom[p.To] >= 0 {
|
||
|
im = intersect(im, p.To)
|
||
|
}
|
||
|
}
|
||
|
if dom[b] != im {
|
||
|
dom[b] = im
|
||
|
changed = true
|
||
|
}
|
||
|
}
|
||
|
if !changed {
|
||
|
return Dominators{dom, tr}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// PostDominators computes the immediate postdominator for each node that can
|
||
|
// reach node end.
|
||
|
//
|
||
|
// The slice returned as Dominators.Immediate will have the length of
|
||
|
// g.AdjacencyList. Nodes without a path to end will have a value of -1.
|
||
|
//
|
||
|
// See also the method Doms. Internally Dominators must construct the
|
||
|
// transpose of g and also compute a postordering of a spanning tree of the
|
||
|
// subgraph of the transpose reachable from end. If you happen to have either
|
||
|
// of these computed anyway, it can be more efficient to call Doms directly.
|
||
|
//
|
||
|
// See the method Doms anyway for the caution note. PostDominators calls
|
||
|
// Doms internally, passing receiver g as Doms argument tr. The caution means
|
||
|
// that it is invalid to call PostDominators, modify the graph g, then call
|
||
|
// Frontier.
|
||
|
func (g LabeledDirected) PostDominators(end NI) Dominators {
|
||
|
tr, _ := g.Transpose()
|
||
|
a := tr.LabeledAdjacencyList
|
||
|
l := len(a)
|
||
|
post := make([]NI, l)
|
||
|
a.BreadthFirst(end, func(n NI) {
|
||
|
l--
|
||
|
post[l] = n
|
||
|
})
|
||
|
return tr.Doms(g, post[l:])
|
||
|
}
|
||
|
|
||
|
// called from Dominators.Frontier via interface
|
||
|
func (from LabeledDirected) domFrontiers(d Dominators) DominanceFrontiers {
|
||
|
im := d.Immediate
|
||
|
f := make(DominanceFrontiers, len(im))
|
||
|
for i := range f {
|
||
|
if im[i] >= 0 {
|
||
|
f[i] = map[NI]struct{}{}
|
||
|
}
|
||
|
}
|
||
|
for b, fr := range from.LabeledAdjacencyList {
|
||
|
if len(fr) < 2 {
|
||
|
continue
|
||
|
}
|
||
|
imb := im[b]
|
||
|
for _, p := range fr {
|
||
|
for runner := p.To; runner != imb; runner = im[runner] {
|
||
|
f[runner][NI(b)] = struct{}{}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return f
|
||
|
}
|
||
|
|
||
|
// Eulerian scans a directed graph to determine if it is Eulerian.
|
||
|
//
|
||
|
// If the graph represents an Eulerian cycle, it returns -1, -1, nil.
|
||
|
//
|
||
|
// If the graph does not represent an Eulerian cycle but does represent an
|
||
|
// Eulerian path, it returns the start and end nodes of the path, and nil.
|
||
|
//
|
||
|
// Otherwise it returns an error indicating a reason the graph is non-Eulerian.
|
||
|
// Also in this case it returns a relevant node in either start or end.
|
||
|
//
|
||
|
// See also method EulerianStart, which short-circuits when it finds a start
|
||
|
// node whereas this method completely validates a graph as Eulerian.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) Eulerian() (start, end NI, err error) {
|
||
|
ind := g.InDegree()
|
||
|
start = -1
|
||
|
end = -1
|
||
|
for n, to := range g.LabeledAdjacencyList {
|
||
|
switch {
|
||
|
case len(to) > ind[n]:
|
||
|
if start >= 0 {
|
||
|
return NI(n), -1, errors.New("multiple start candidates")
|
||
|
}
|
||
|
if len(to) > ind[n]+1 {
|
||
|
return NI(n), -1, errors.New("excessive out-degree")
|
||
|
}
|
||
|
start = NI(n)
|
||
|
case ind[n] > len(to):
|
||
|
if end >= 0 {
|
||
|
return -1, NI(n), errors.New("multiple end candidates")
|
||
|
}
|
||
|
if ind[n] > len(to)+1 {
|
||
|
return -1, NI(n), errors.New("excessive in-degree")
|
||
|
}
|
||
|
end = NI(n)
|
||
|
}
|
||
|
}
|
||
|
return start, end, nil
|
||
|
}
|
||
|
|
||
|
// EulerianCycle finds an Eulerian cycle in a directed multigraph.
|
||
|
//
|
||
|
// * If g has no nodes, result is nil, nil.
|
||
|
//
|
||
|
// * If g is Eulerian, result is an Eulerian cycle with err = nil.
|
||
|
// The first element of the result represents only a start node.
|
||
|
// The remaining elements represent the half arcs of the cycle.
|
||
|
//
|
||
|
// * Otherwise, result is nil, with a non-nil error giving a reason the graph
|
||
|
// is not Eulerian.
|
||
|
//
|
||
|
// Internally, EulerianCycle copies the entire graph g.
|
||
|
// See EulerianCycleD for a more space efficient version.
|
||
|
//
|
||
|
// There are nearly equivalent labeled and unlabeled versions of this method.
|
||
|
// In the labeled version the first element of of the
|
||
|
func (g LabeledDirected) EulerianCycle() ([]Half, error) {
|
||
|
c, m := g.Copy()
|
||
|
return c.EulerianCycleD(m)
|
||
|
}
|
||
|
|
||
|
// EulerianCycleD finds an Eulerian cycle in a directed multigraph.
|
||
|
//
|
||
|
// EulerianCycleD is destructive on its receiver g. See EulerianCycle for
|
||
|
// a non-destructive version.
|
||
|
//
|
||
|
// Argument ma must be the correct arc size, or number of arcs in g.
|
||
|
//
|
||
|
// * If g has no nodes, result is nil, nil.
|
||
|
//
|
||
|
// * If g is Eulerian, result is an Eulerian cycle with err = nil.
|
||
|
// The first element of the result represents only a start node.
|
||
|
// The remaining elements represent the half arcs of the cycle.
|
||
|
//
|
||
|
// * Otherwise, result is nil, with a non-nil error giving a reason the graph
|
||
|
// is not Eulerian.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) EulerianCycleD(ma int) ([]Half, error) {
|
||
|
// algorithm adapted from "Sketch of Eulerian Circuit Algorithm" by
|
||
|
// Carl Lee, accessed at http://www.ms.uky.edu/~lee/ma515fa10/euler.pdf.
|
||
|
if g.Order() == 0 {
|
||
|
return nil, nil
|
||
|
}
|
||
|
e := newLabEulerian(g.LabeledAdjacencyList, ma)
|
||
|
e.p[0] = Half{0, -1}
|
||
|
for e.s >= 0 {
|
||
|
v := e.top() // v is node that starts cycle
|
||
|
e.push()
|
||
|
// if Eulerian, we'll always come back to starting node
|
||
|
if e.top().To != v.To {
|
||
|
return nil, errors.New("not Eulerian")
|
||
|
}
|
||
|
e.keep()
|
||
|
}
|
||
|
if !e.uv.AllZeros() {
|
||
|
return nil, errors.New("not strongly connected")
|
||
|
}
|
||
|
return e.p, nil
|
||
|
}
|
||
|
|
||
|
// EulerianPath finds an Eulerian path in a directed multigraph.
|
||
|
//
|
||
|
// * If g has no nodes, result is nil, nil.
|
||
|
//
|
||
|
// * If g has an Eulerian path, result is an Eulerian path with err = nil.
|
||
|
// The first element of the result represents only a start node.
|
||
|
// The remaining elements represent the half arcs of the path.
|
||
|
//
|
||
|
// * Otherwise, result is nil, with a non-nil error giving a reason the graph
|
||
|
// is not Eulerian.
|
||
|
//
|
||
|
// Internally, EulerianPath copies the entire graph g.
|
||
|
// See EulerianPathD for a more space efficient version.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) EulerianPath() ([]Half, error) {
|
||
|
c, m := g.Copy()
|
||
|
start, err := c.EulerianStart()
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
if start < 0 {
|
||
|
start = 0
|
||
|
}
|
||
|
return c.EulerianPathD(m, start)
|
||
|
}
|
||
|
|
||
|
// EulerianPathD finds an Eulerian path in a directed multigraph.
|
||
|
//
|
||
|
// EulerianPathD is destructive on its receiver g. See EulerianPath for
|
||
|
// a non-destructive version.
|
||
|
//
|
||
|
// Argument ma must be the correct arc size, or number of arcs in g.
|
||
|
// Argument start must be a valid start node for the path.
|
||
|
//
|
||
|
// * If g has no nodes, result is nil, nil.
|
||
|
//
|
||
|
// * If g has an Eulerian path starting at start, result is an Eulerian path
|
||
|
// with err = nil.
|
||
|
// The first element of the result represents only a start node.
|
||
|
// The remaining elements represent the half arcs of the path.
|
||
|
//
|
||
|
// * Otherwise, result is nil, with a non-nil error giving a reason the graph
|
||
|
// is not Eulerian.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) EulerianPathD(ma int, start NI) ([]Half, error) {
|
||
|
if g.Order() == 0 {
|
||
|
return nil, nil
|
||
|
}
|
||
|
e := newLabEulerian(g.LabeledAdjacencyList, ma)
|
||
|
e.p[0] = Half{start, -1}
|
||
|
// unlike EulerianCycle, the first path doesn't have to be a cycle.
|
||
|
e.push()
|
||
|
e.keep()
|
||
|
for e.s >= 0 {
|
||
|
start = e.top().To
|
||
|
e.push()
|
||
|
// paths after the first must be cycles though
|
||
|
// (as long as there are nodes on the stack)
|
||
|
if e.top().To != start {
|
||
|
return nil, errors.New("no Eulerian path")
|
||
|
}
|
||
|
e.keep()
|
||
|
}
|
||
|
if !e.uv.AllZeros() {
|
||
|
return nil, errors.New("no Eulerian path")
|
||
|
}
|
||
|
return e.p, nil
|
||
|
}
|
||
|
|
||
|
// EulerianStart finds a candidate start node for an Eulerian path.
|
||
|
//
|
||
|
// A candidate start node in the directed case has out-degree one greater then
|
||
|
// in-degree. EulerianStart scans the graph returning immediately with the
|
||
|
// node (and err == nil) when it finds such a candidate.
|
||
|
//
|
||
|
// EulerianStart also returns immediately with an error if it finds the graph
|
||
|
// cannot contain an Eulerian path. In this case it also returns a relevant
|
||
|
// node.
|
||
|
//
|
||
|
// If the scan completes without finding a candidate start node, the graph
|
||
|
// represents an Eulerian cycle. In this case it returns -1, nil, and any
|
||
|
// node can be chosen as a start node for an eulerian path.
|
||
|
//
|
||
|
// See also method Eulerian, which completely validates a graph as Eulerian
|
||
|
// whereas this method short-curcuits when it finds a start node.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) EulerianStart() (start NI, err error) {
|
||
|
ind := g.InDegree()
|
||
|
end := -1
|
||
|
for n, to := range g.LabeledAdjacencyList {
|
||
|
switch {
|
||
|
case len(to) > ind[n]:
|
||
|
if len(to) == ind[n]+1 {
|
||
|
return NI(n), nil // candidate start
|
||
|
}
|
||
|
return -1, errors.New("excessive out-degree")
|
||
|
case ind[n] > len(to):
|
||
|
if end >= 0 {
|
||
|
return NI(n), errors.New("multiple end candidates")
|
||
|
}
|
||
|
if ind[n] > len(to)+1 {
|
||
|
return NI(n), errors.New("excessive in-degree")
|
||
|
}
|
||
|
end = n
|
||
|
}
|
||
|
}
|
||
|
return -1, nil // cycle
|
||
|
}
|
||
|
|
||
|
type labEulerian struct {
|
||
|
g LabeledAdjacencyList // working copy of graph, it gets consumed
|
||
|
m int // number of arcs in g, updated as g is consumed
|
||
|
uv bits.Bits // unvisited
|
||
|
// low end of p is stack of unfinished nodes
|
||
|
// high end is finished path
|
||
|
p []Half // stack + path
|
||
|
s int // stack pointer
|
||
|
}
|
||
|
|
||
|
func newLabEulerian(g LabeledAdjacencyList, m int) *labEulerian {
|
||
|
e := &labEulerian{
|
||
|
g: g,
|
||
|
m: m,
|
||
|
uv: bits.New(len(g)),
|
||
|
p: make([]Half, m+1),
|
||
|
}
|
||
|
e.uv.SetAll()
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
// starting with the node on top of the stack, move nodes with no arcs.
|
||
|
func (e *labEulerian) keep() {
|
||
|
for e.s >= 0 {
|
||
|
n := e.top()
|
||
|
if len(e.g[n.To]) > 0 {
|
||
|
break
|
||
|
}
|
||
|
e.p[e.m] = n
|
||
|
e.s--
|
||
|
e.m--
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (e *labEulerian) top() Half {
|
||
|
return e.p[e.s]
|
||
|
}
|
||
|
|
||
|
// MaximalNonBranchingPaths finds all paths in a directed graph that are
|
||
|
// "maximal" and "non-branching".
|
||
|
//
|
||
|
// A non-branching path is one where path nodes other than the first and last
|
||
|
// have exactly one arc leading to the node and one arc leading from the node,
|
||
|
// thus there is no possibility to branch away to a different path.
|
||
|
//
|
||
|
// A maximal non-branching path cannot be extended to a longer non-branching
|
||
|
// path by including another node at either end.
|
||
|
//
|
||
|
// In the case of a cyclic non-branching path, the first and last nodes
|
||
|
// of the path will be the same node, indicating an isolated cycle.
|
||
|
//
|
||
|
// The method calls the emit argument for each path or isolated cycle in g,
|
||
|
// as long as emit returns true. If emit returns false,
|
||
|
// MaximalNonBranchingPaths returns immediately.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) MaximalNonBranchingPaths(emit func([]Half) bool) {
|
||
|
a := g.LabeledAdjacencyList
|
||
|
ind := g.InDegree()
|
||
|
uv := bits.New(g.Order())
|
||
|
uv.SetAll()
|
||
|
for v, vTo := range a {
|
||
|
if !(ind[v] == 1 && len(vTo) == 1) {
|
||
|
for _, w := range vTo {
|
||
|
n := []Half{Half{NI(v), -1}, w}
|
||
|
uv.SetBit(v, 0)
|
||
|
uv.SetBit(int(w.To), 0)
|
||
|
wTo := a[w.To]
|
||
|
for ind[w.To] == 1 && len(wTo) == 1 {
|
||
|
u := wTo[0]
|
||
|
n = append(n, u)
|
||
|
uv.SetBit(int(u.To), 0)
|
||
|
w = u
|
||
|
wTo = a[w.To]
|
||
|
}
|
||
|
if !emit(n) { // n is a path
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// use uv.From rather than uv.Iterate.
|
||
|
// Iterate doesn't work here because we're modifying uv
|
||
|
for b := uv.OneFrom(0); b >= 0; b = uv.OneFrom(b + 1) {
|
||
|
v := Half{NI(b), -1}
|
||
|
n := []Half{v}
|
||
|
for w := v; ; {
|
||
|
w = a[w.To][0]
|
||
|
uv.SetBit(int(w.To), 0)
|
||
|
n = append(n, w)
|
||
|
if w.To == v.To {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
if !emit(n) { // n is an isolated cycle
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// InDegree computes the in-degree of each node in g
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) InDegree() []int {
|
||
|
ind := make([]int, g.Order())
|
||
|
for _, nbs := range g.LabeledAdjacencyList {
|
||
|
for _, nb := range nbs {
|
||
|
ind[nb.To]++
|
||
|
}
|
||
|
}
|
||
|
return ind
|
||
|
}
|
||
|
|
||
|
// AddNode maps a node in a supergraph to a subgraph node.
|
||
|
//
|
||
|
// Argument p must be an NI in supergraph s.Super. AddNode panics if
|
||
|
// p is not a valid node index of s.Super.
|
||
|
//
|
||
|
// AddNode is idempotent in that it does not add a new node to the subgraph if
|
||
|
// a subgraph node already exists mapped to supergraph node p.
|
||
|
//
|
||
|
// The mapped subgraph NI is returned.
|
||
|
func (s *LabeledDirectedSubgraph) AddNode(p NI) (b NI) {
|
||
|
if int(p) < 0 || int(p) >= s.Super.Order() {
|
||
|
panic(fmt.Sprint("AddNode: NI ", p, " not in supergraph"))
|
||
|
}
|
||
|
if b, ok := s.SubNI[p]; ok {
|
||
|
return b
|
||
|
}
|
||
|
a := s.LabeledDirected.LabeledAdjacencyList
|
||
|
b = NI(len(a))
|
||
|
s.LabeledDirected.LabeledAdjacencyList = append(a, nil)
|
||
|
s.SuperNI = append(s.SuperNI, p)
|
||
|
s.SubNI[p] = b
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// AddArc adds an arc to a subgraph.
|
||
|
//
|
||
|
// Arguments fr, to must be NIs in supergraph s.Super. As with AddNode,
|
||
|
// AddArc panics if fr and to are not valid node indexes of s.Super.
|
||
|
//
|
||
|
// The arc specfied by fr, to must exist in s.Super. Further, the number of
|
||
|
// parallel arcs in the subgraph cannot exceed the number of corresponding
|
||
|
// parallel arcs in the supergraph. That is, each arc already added to the
|
||
|
// subgraph counts against the arcs available in the supergraph. If a matching
|
||
|
// arc is not available, AddArc returns an error.
|
||
|
//
|
||
|
// If a matching arc is available, subgraph nodes are added as needed, the
|
||
|
// subgraph arc is added, and the method returns nil.
|
||
|
func (s *LabeledDirectedSubgraph) AddArc(fr NI, to Half) error {
|
||
|
// verify supergraph NIs first, but without adding subgraph nodes just yet.
|
||
|
if int(fr) < 0 || int(fr) >= s.Super.Order() {
|
||
|
panic(fmt.Sprint("AddArc: NI ", fr, " not in supergraph"))
|
||
|
}
|
||
|
if int(to.To) < 0 || int(to.To) >= s.Super.Order() {
|
||
|
panic(fmt.Sprint("AddArc: NI ", to.To, " not in supergraph"))
|
||
|
}
|
||
|
// count existing matching arcs in subgraph
|
||
|
n := 0
|
||
|
a := s.LabeledDirected.LabeledAdjacencyList
|
||
|
if bf, ok := s.SubNI[fr]; ok {
|
||
|
if bt, ok := s.SubNI[to.To]; ok {
|
||
|
// both NIs already exist in subgraph, need to count arcs
|
||
|
bTo := to
|
||
|
bTo.To = bt
|
||
|
for _, t := range a[bf] {
|
||
|
if t == bTo {
|
||
|
n++
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// verify matching arcs are available in supergraph
|
||
|
for _, t := range (*s.Super).LabeledAdjacencyList[fr] {
|
||
|
if t == to {
|
||
|
if n > 0 {
|
||
|
n-- // match existing arc
|
||
|
continue
|
||
|
}
|
||
|
// no more existing arcs need to be matched. nodes can finally
|
||
|
// be added as needed and then the arc can be added.
|
||
|
bf := s.AddNode(fr)
|
||
|
to.To = s.AddNode(to.To)
|
||
|
s.LabeledDirected.LabeledAdjacencyList[bf] =
|
||
|
append(s.LabeledDirected.LabeledAdjacencyList[bf], to)
|
||
|
return nil // success
|
||
|
}
|
||
|
}
|
||
|
return errors.New("arc not available in supergraph")
|
||
|
}
|
||
|
|
||
|
// InduceList constructs a node-induced subgraph.
|
||
|
//
|
||
|
// The subgraph is induced on receiver graph g. Argument l must be a list of
|
||
|
// NIs in receiver graph g. Receiver g becomes the supergraph of the induced
|
||
|
// subgraph.
|
||
|
//
|
||
|
// Duplicate NIs are allowed in list l. The duplicates are effectively removed
|
||
|
// and only a single corresponding node is created in the subgraph. Subgraph
|
||
|
// NIs are mapped in the order of list l, execpt for ignoring duplicates.
|
||
|
// NIs in l that are not in g will panic.
|
||
|
//
|
||
|
// Returned is the constructed Subgraph object containing the induced subgraph
|
||
|
// and the mappings to the supergraph.
|
||
|
func (g *LabeledDirected) InduceList(l []NI) *LabeledDirectedSubgraph {
|
||
|
sub, sup := mapList(l)
|
||
|
return &LabeledDirectedSubgraph{
|
||
|
Super: g,
|
||
|
SubNI: sub,
|
||
|
SuperNI: sup,
|
||
|
LabeledDirected: LabeledDirected{
|
||
|
g.LabeledAdjacencyList.induceArcs(sub, sup),
|
||
|
}}
|
||
|
}
|
||
|
|
||
|
// InduceBits constructs a node-induced subgraph.
|
||
|
//
|
||
|
// The subgraph is induced on receiver graph g. Argument t must be a bitmap
|
||
|
// representing NIs in receiver graph g. Receiver g becomes the supergraph
|
||
|
// of the induced subgraph. NIs in t that are not in g will panic.
|
||
|
//
|
||
|
// Returned is the constructed Subgraph object containing the induced subgraph
|
||
|
// and the mappings to the supergraph.
|
||
|
func (g *LabeledDirected) InduceBits(t bits.Bits) *LabeledDirectedSubgraph {
|
||
|
sub, sup := mapBits(t)
|
||
|
return &LabeledDirectedSubgraph{
|
||
|
Super: g,
|
||
|
SubNI: sub,
|
||
|
SuperNI: sup,
|
||
|
LabeledDirected: LabeledDirected{
|
||
|
g.LabeledAdjacencyList.induceArcs(sub, sup),
|
||
|
}}
|
||
|
}
|
||
|
|
||
|
// IsTree identifies trees in directed graphs.
|
||
|
//
|
||
|
// Return value isTree is true if the subgraph reachable from root is a tree.
|
||
|
// Further, return value allTree is true if the entire graph g is reachable
|
||
|
// from root.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) IsTree(root NI) (isTree, allTree bool) {
|
||
|
a := g.LabeledAdjacencyList
|
||
|
v := bits.New(len(a))
|
||
|
v.SetAll()
|
||
|
var df func(NI) bool
|
||
|
df = func(n NI) bool {
|
||
|
if v.Bit(int(n)) == 0 {
|
||
|
return false
|
||
|
}
|
||
|
v.SetBit(int(n), 0)
|
||
|
for _, to := range a[n] {
|
||
|
if !df(to.To) {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
isTree = df(root)
|
||
|
return isTree, isTree && v.AllZeros()
|
||
|
}
|
||
|
|
||
|
// PageRank computes a significance score for each node of a graph.
|
||
|
//
|
||
|
// The algorithm is credited to Google founders Brin and Lawrence.
|
||
|
//
|
||
|
// Argument d is a damping factor. Reportedly a value of .85 works well.
|
||
|
// Argument n is a number of iterations. Reportedly values of 20 to 50
|
||
|
// work well.
|
||
|
//
|
||
|
// Returned is the PageRank score for each node of g.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) PageRank(d float64, n int) []float64 {
|
||
|
// Following "PageRank Explained" by Ian Rogers, accessed at
|
||
|
// http://www.cs.princeton.edu/~chazelle/courses/BIB/pagerank.htm
|
||
|
a := g.LabeledAdjacencyList
|
||
|
p0 := make([]float64, len(a))
|
||
|
p1 := make([]float64, len(a))
|
||
|
for i := range p0 {
|
||
|
p0[i] = 1
|
||
|
}
|
||
|
d1 := 1 - d
|
||
|
for ; n > 0; n-- {
|
||
|
for i := range p1 {
|
||
|
p1[i] = d1
|
||
|
}
|
||
|
for fr, to := range a {
|
||
|
f := d / float64(len(to))
|
||
|
for _, to := range to {
|
||
|
p1[to.To] += p0[fr] * f
|
||
|
}
|
||
|
}
|
||
|
p0, p1 = p1, p0
|
||
|
}
|
||
|
return p0
|
||
|
}
|
||
|
|
||
|
// StronglyConnectedComponents identifies strongly connected components in
|
||
|
// a directed graph.
|
||
|
//
|
||
|
// The method calls the emit function for each component identified. The
|
||
|
// argument to emit is the node list of a component. The emit function must
|
||
|
// return true for the method to continue identifying components. If emit
|
||
|
// returns false, the method returns immediately.
|
||
|
//
|
||
|
// Note well: The backing slice for the node list passed to emit is reused
|
||
|
// across emit calls. If you need to retain the node list you must copy it.
|
||
|
//
|
||
|
// The components emitted represent a partition of the nodes in g.
|
||
|
// So for example, if the first component emitted has the same length as g
|
||
|
// then it will be the only component and it means the entire graph g is
|
||
|
// strongly connected.
|
||
|
//
|
||
|
// See also Condensation which returns a condensation graph in addition
|
||
|
// to the strongly connected components.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
//
|
||
|
// The algorithm here is by David Pearce. See also alt.SCCPathBased and
|
||
|
// alt.SCCTarjan.
|
||
|
func (g LabeledDirected) StronglyConnectedComponents(emit func([]NI) bool) {
|
||
|
// See Algorithm 3 PEA FIND SCC2(V,E) in "An Improved Algorithm for
|
||
|
// Finding the Strongly Connected Components of a Directed Graph"
|
||
|
// by David J. Pearce.
|
||
|
a := g.LabeledAdjacencyList
|
||
|
rindex := make([]int, len(a))
|
||
|
var S, scc []NI
|
||
|
index := 1
|
||
|
c := len(a) - 1
|
||
|
var visit func(NI) bool
|
||
|
visit = func(v NI) bool {
|
||
|
root := true
|
||
|
rindex[v] = index
|
||
|
index++
|
||
|
for _, w := range a[v] {
|
||
|
if rindex[w.To] == 0 {
|
||
|
if !visit(w.To) {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
if rindex[w.To] < rindex[v] {
|
||
|
rindex[v] = rindex[w.To]
|
||
|
root = false
|
||
|
}
|
||
|
}
|
||
|
if !root {
|
||
|
S = append(S, v)
|
||
|
return true
|
||
|
}
|
||
|
scc = scc[:0]
|
||
|
index--
|
||
|
for last := len(S) - 1; last >= 0; last-- {
|
||
|
w := S[last]
|
||
|
if rindex[v] > rindex[w] {
|
||
|
break
|
||
|
}
|
||
|
S = S[:last]
|
||
|
rindex[w] = c
|
||
|
scc = append(scc, w)
|
||
|
index--
|
||
|
}
|
||
|
rindex[v] = c
|
||
|
c--
|
||
|
return emit(append(scc, v))
|
||
|
}
|
||
|
for v := range a {
|
||
|
if rindex[v] == 0 && !visit(NI(v)) {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Condensation returns strongly connected components and their
|
||
|
// condensation graph.
|
||
|
//
|
||
|
// A condensation represents a directed acyclic graph.
|
||
|
// Components are ordered in a reverse topological ordering.
|
||
|
//
|
||
|
// See also StronglyConnectedComponents, which returns the components only.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) Condensation() (scc [][]NI, cd AdjacencyList) {
|
||
|
a := g.LabeledAdjacencyList
|
||
|
b := make([]NI, len(a)) // backing slice for scc
|
||
|
g.StronglyConnectedComponents(func(c []NI) bool {
|
||
|
n := copy(b, c)
|
||
|
scc = append(scc, b[:n])
|
||
|
b = b[n:]
|
||
|
return true
|
||
|
})
|
||
|
cd = make(AdjacencyList, len(scc)) // return value
|
||
|
cond := make([]NI, len(a)) // mapping from g node to cd node
|
||
|
for cn, c := range scc {
|
||
|
for _, n := range c {
|
||
|
cond[n] = NI(cn) // map g node to cd node
|
||
|
}
|
||
|
var tos []NI // list of 'to' nodes
|
||
|
m := bits.New(len(cd)) // tos map
|
||
|
m.SetBit(cn, 1)
|
||
|
for _, n := range c {
|
||
|
for _, to := range a[n] {
|
||
|
if ct := cond[to.To]; m.Bit(int(ct)) == 0 {
|
||
|
m.SetBit(int(ct), 1)
|
||
|
tos = append(tos, ct)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
cd[cn] = tos
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Topological computes a topological ordering of a directed acyclic graph.
|
||
|
//
|
||
|
// For an acyclic graph, return value ordering is a permutation of node numbers
|
||
|
// in topologically sorted order and cycle will be nil. If the graph is found
|
||
|
// to be cyclic, ordering will be nil and cycle will be the path of a found
|
||
|
// cycle.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) Topological() (ordering, cycle []NI) {
|
||
|
i := -1
|
||
|
return g.dfTopo(func() NI {
|
||
|
i++
|
||
|
if i < g.Order() {
|
||
|
return NI(i)
|
||
|
}
|
||
|
return -1
|
||
|
})
|
||
|
}
|
||
|
|
||
|
func (g LabeledDirected) dfTopo(f func() NI) (ordering, cycle []NI) {
|
||
|
a := g.LabeledAdjacencyList
|
||
|
ordering = make([]NI, len(a))
|
||
|
i := len(ordering)
|
||
|
temp := bits.New(len(a))
|
||
|
perm := bits.New(len(a))
|
||
|
var cycleFound bool
|
||
|
var cycleStart NI
|
||
|
var df func(NI)
|
||
|
df = func(n NI) {
|
||
|
switch {
|
||
|
case temp.Bit(int(n)) == 1:
|
||
|
cycleFound = true
|
||
|
cycleStart = n
|
||
|
return
|
||
|
case perm.Bit(int(n)) == 1:
|
||
|
return
|
||
|
}
|
||
|
temp.SetBit(int(n), 1)
|
||
|
for _, nb := range a[n] {
|
||
|
df(nb.To)
|
||
|
if cycleFound {
|
||
|
if cycleStart >= 0 {
|
||
|
// a little hack: orderng won't be needed so repurpose the
|
||
|
// slice as cycle. this is read out in reverse order
|
||
|
// as the recursion unwinds.
|
||
|
x := len(ordering) - 1 - len(cycle)
|
||
|
ordering[x] = n
|
||
|
cycle = ordering[x:]
|
||
|
if n == cycleStart {
|
||
|
cycleStart = -1
|
||
|
}
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
temp.SetBit(int(n), 0)
|
||
|
perm.SetBit(int(n), 1)
|
||
|
i--
|
||
|
ordering[i] = n
|
||
|
}
|
||
|
for {
|
||
|
n := f()
|
||
|
if n < 0 {
|
||
|
return ordering[i:], nil
|
||
|
}
|
||
|
if perm.Bit(int(n)) == 1 {
|
||
|
continue
|
||
|
}
|
||
|
df(n)
|
||
|
if cycleFound {
|
||
|
return nil, cycle
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// TopologicalKahn computes a topological ordering of a directed acyclic graph.
|
||
|
//
|
||
|
// For an acyclic graph, return value ordering is a permutation of node numbers
|
||
|
// in topologically sorted order and cycle will be nil. If the graph is found
|
||
|
// to be cyclic, ordering will be nil and cycle will be the path of a found
|
||
|
// cycle.
|
||
|
//
|
||
|
// This function is based on the algorithm by Arthur Kahn and requires the
|
||
|
// transpose of g be passed as the argument.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) TopologicalKahn(tr Directed) (ordering, cycle []NI) {
|
||
|
// code follows Wikipedia pseudocode.
|
||
|
var L, S []NI
|
||
|
// rem for "remaining edges," this function makes a local copy of the
|
||
|
// in-degrees and consumes that instead of consuming an input.
|
||
|
rem := make([]int, g.Order())
|
||
|
for n, fr := range tr.AdjacencyList {
|
||
|
if len(fr) == 0 {
|
||
|
// accumulate "set of all nodes with no incoming edges"
|
||
|
S = append(S, NI(n))
|
||
|
} else {
|
||
|
// initialize rem from in-degree
|
||
|
rem[n] = len(fr)
|
||
|
}
|
||
|
}
|
||
|
for len(S) > 0 {
|
||
|
last := len(S) - 1 // "remove a node n from S"
|
||
|
n := S[last]
|
||
|
S = S[:last]
|
||
|
L = append(L, n) // "add n to tail of L"
|
||
|
for _, m := range g.LabeledAdjacencyList[n] {
|
||
|
// WP pseudo code reads "for each node m..." but it means for each
|
||
|
// node m *remaining in the graph.* We consume rem rather than
|
||
|
// the graph, so "remaining in the graph" for us means rem[m] > 0.
|
||
|
if rem[m.To] > 0 {
|
||
|
rem[m.To]-- // "remove edge from the graph"
|
||
|
if rem[m.To] == 0 { // if "m has no other incoming edges"
|
||
|
S = append(S, m.To) // "insert m into S"
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// "If graph has edges," for us means a value in rem is > 0.
|
||
|
for c, in := range rem {
|
||
|
if in > 0 {
|
||
|
// recover cyclic nodes
|
||
|
for _, nb := range g.LabeledAdjacencyList[c] {
|
||
|
if rem[nb.To] > 0 {
|
||
|
cycle = append(cycle, NI(c))
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if len(cycle) > 0 {
|
||
|
return nil, cycle
|
||
|
}
|
||
|
return L, nil
|
||
|
}
|
||
|
|
||
|
// TopologicalSubgraph computes a topological ordering of a subgraph of a
|
||
|
// directed acyclic graph.
|
||
|
//
|
||
|
// The subgraph considered is that reachable from the specified node list.
|
||
|
//
|
||
|
// For an acyclic subgraph, return value ordering is a permutation of reachable
|
||
|
// node numbers in topologically sorted order and cycle will be nil. If the
|
||
|
// subgraph is found to be cyclic, ordering will be nil and cycle will be
|
||
|
// the path of a found cycle.
|
||
|
//
|
||
|
// There are equivalent labeled and unlabeled versions of this method.
|
||
|
func (g LabeledDirected) TopologicalSubgraph(nodes []NI) (ordering, cycle []NI) {
|
||
|
i := -1
|
||
|
return g.dfTopo(func() NI {
|
||
|
i++
|
||
|
if i < len(nodes) {
|
||
|
return nodes[i]
|
||
|
}
|
||
|
return -1
|
||
|
})
|
||
|
}
|
||
|
|
||
|
// TransitiveClosure returns the transitive closure of directed graph g.
|
||
|
//
|
||
|
// The algorithm is Warren's, which works most naturally with an adjacency
|
||
|
// matrix representation. The returned transitive closure is left in this
|
||
|
// adjacency matrix representation. For a graph g of order n, matrix tc
|
||
|
// is returned as a length n slice of length n bits.Bits values, where
|
||
|
// tc[from].Bit(to) == 1 represents an arc of the transitive closure.
|
||
|
func (g LabeledDirected) TransitiveClosure() []bits.Bits {
|
||
|
// construct adjacency matrix
|
||
|
a := g.LabeledAdjacencyList
|
||
|
t := make([]bits.Bits, len(a))
|
||
|
for n := range t {
|
||
|
tn := bits.New(len(a))
|
||
|
for _, to := range a[n] {
|
||
|
tn.SetBit(int(to.To), 1)
|
||
|
}
|
||
|
t[n] = tn
|
||
|
}
|
||
|
// above diagonal
|
||
|
for i := 1; i < len(a); i++ {
|
||
|
ti := t[i]
|
||
|
for k := 0; k < i; k++ {
|
||
|
if ti.Bit(k) == 1 {
|
||
|
ti.Or(ti, t[k])
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// below diagonal
|
||
|
for i, ti := range t[:len(a)-1] {
|
||
|
for k := i + 1; k < len(a); k++ {
|
||
|
if ti.Bit(k) == 1 {
|
||
|
ti.Or(ti, t[k])
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return t
|
||
|
}
|