762 lines
22 KiB
Go
762 lines
22 KiB
Go
|
// Copyright 2013 Sonia Keys
|
||
|
// License MIT: http://opensource.org/licenses/MIT
|
||
|
|
||
|
package graph
|
||
|
|
||
|
import (
|
||
|
"container/heap"
|
||
|
"fmt"
|
||
|
"math"
|
||
|
|
||
|
"github.com/soniakeys/bits"
|
||
|
)
|
||
|
|
||
|
// rNode holds data for a "reached" node
|
||
|
type rNode struct {
|
||
|
nx NI
|
||
|
state int8 // state constants defined below
|
||
|
f float64 // "g+h", path dist + heuristic estimate
|
||
|
fx int // heap.Fix index
|
||
|
}
|
||
|
|
||
|
// for rNode.state
|
||
|
const (
|
||
|
unreached = 0
|
||
|
reached = 1
|
||
|
open = 1
|
||
|
closed = 2
|
||
|
)
|
||
|
|
||
|
type openHeap []*rNode
|
||
|
|
||
|
// A Heuristic is defined on a specific end node. The function
|
||
|
// returns an estimate of the path distance from node argument
|
||
|
// "from" to the end node. Two subclasses of heuristics are "admissible"
|
||
|
// and "monotonic."
|
||
|
//
|
||
|
// Admissible means the value returned is guaranteed to be less than or
|
||
|
// equal to the actual shortest path distance from the node to end.
|
||
|
//
|
||
|
// An admissible estimate may further be monotonic.
|
||
|
// Monotonic means that for any neighboring nodes A and B with half arc aB
|
||
|
// leading from A to B, and for heuristic h defined on some end node, then
|
||
|
// h(A) <= aB.ArcWeight + h(B).
|
||
|
//
|
||
|
// See AStarA for additional notes on implementing heuristic functions for
|
||
|
// AStar search methods.
|
||
|
type Heuristic func(from NI) float64
|
||
|
|
||
|
// Admissible returns true if heuristic h is admissible on graph g relative to
|
||
|
// the given end node.
|
||
|
//
|
||
|
// If h is inadmissible, the string result describes a counter example.
|
||
|
func (h Heuristic) Admissible(g LabeledAdjacencyList, w WeightFunc, end NI) (bool, string) {
|
||
|
// invert graph
|
||
|
inv := make(LabeledAdjacencyList, len(g))
|
||
|
for from, nbs := range g {
|
||
|
for _, nb := range nbs {
|
||
|
inv[nb.To] = append(inv[nb.To],
|
||
|
Half{To: NI(from), Label: nb.Label})
|
||
|
}
|
||
|
}
|
||
|
// run dijkstra
|
||
|
// Dijkstra.AllPaths takes a start node but after inverting the graph
|
||
|
// argument end now represents the start node of the inverted graph.
|
||
|
f, _, dist, _ := inv.Dijkstra(end, -1, w)
|
||
|
// compare h to found shortest paths
|
||
|
for n := range inv {
|
||
|
if f.Paths[n].Len == 0 {
|
||
|
continue // no path, any heuristic estimate is fine.
|
||
|
}
|
||
|
if !(h(NI(n)) <= dist[n]) {
|
||
|
return false, fmt.Sprintf("h(%d) = %g, "+
|
||
|
"required to be <= found shortest path (%g)",
|
||
|
n, h(NI(n)), dist[n])
|
||
|
}
|
||
|
}
|
||
|
return true, ""
|
||
|
}
|
||
|
|
||
|
// Monotonic returns true if heuristic h is monotonic on weighted graph g.
|
||
|
//
|
||
|
// If h is non-monotonic, the string result describes a counter example.
|
||
|
func (h Heuristic) Monotonic(g LabeledAdjacencyList, w WeightFunc) (bool, string) {
|
||
|
// precompute
|
||
|
hv := make([]float64, len(g))
|
||
|
for n := range g {
|
||
|
hv[n] = h(NI(n))
|
||
|
}
|
||
|
// iterate over all edges
|
||
|
for from, nbs := range g {
|
||
|
for _, nb := range nbs {
|
||
|
arcWeight := w(nb.Label)
|
||
|
if !(hv[from] <= arcWeight+hv[nb.To]) {
|
||
|
return false, fmt.Sprintf("h(%d) = %g, "+
|
||
|
"required to be <= arc weight + h(%d) (= %g + %g = %g)",
|
||
|
from, hv[from],
|
||
|
nb.To, arcWeight, hv[nb.To], arcWeight+hv[nb.To])
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true, ""
|
||
|
}
|
||
|
|
||
|
// AStarA finds a path between two nodes.
|
||
|
//
|
||
|
// AStarA implements both algorithm A and algorithm A*. The difference in the
|
||
|
// two algorithms is strictly in the heuristic estimate returned by argument h.
|
||
|
// If h is an "admissible" heuristic estimate, then the algorithm is termed A*,
|
||
|
// otherwise it is algorithm A.
|
||
|
//
|
||
|
// Like Dijkstra's algorithm, AStarA with an admissible heuristic finds the
|
||
|
// shortest path between start and end. AStarA generally runs faster than
|
||
|
// Dijkstra though, by using the heuristic distance estimate.
|
||
|
//
|
||
|
// AStarA with an inadmissible heuristic becomes algorithm A. Algorithm A
|
||
|
// will find a path, but it is not guaranteed to be the shortest path.
|
||
|
// The heuristic still guides the search however, so a nearly admissible
|
||
|
// heuristic is likely to find a very good path, if not the best. Quality
|
||
|
// of the path returned degrades gracefully with the quality of the heuristic.
|
||
|
//
|
||
|
// The heuristic function h should ideally be fairly inexpensive. AStarA
|
||
|
// may call it more than once for the same node, especially as graph density
|
||
|
// increases. In some cases it may be worth the effort to memoize or
|
||
|
// precompute values.
|
||
|
//
|
||
|
// Argument g is the graph to be searched, with arc weights returned by w.
|
||
|
// As usual for AStar, arc weights must be non-negative.
|
||
|
// Graphs may be directed or undirected.
|
||
|
//
|
||
|
// If AStarA finds a path it returns a FromList encoding the path, the arc
|
||
|
// labels for path nodes, the total path distance, and ok = true.
|
||
|
// Otherwise it returns ok = false.
|
||
|
func (g LabeledAdjacencyList) AStarA(w WeightFunc, start, end NI, h Heuristic) (f FromList, labels []LI, dist float64, ok bool) {
|
||
|
// NOTE: AStarM is largely duplicate code.
|
||
|
|
||
|
f = NewFromList(len(g))
|
||
|
labels = make([]LI, len(g))
|
||
|
d := make([]float64, len(g))
|
||
|
r := make([]rNode, len(g))
|
||
|
for i := range r {
|
||
|
r[i].nx = NI(i)
|
||
|
}
|
||
|
// start node is reached initially
|
||
|
cr := &r[start]
|
||
|
cr.state = reached
|
||
|
cr.f = h(start) // total path estimate is estimate from start
|
||
|
rp := f.Paths
|
||
|
rp[start] = PathEnd{Len: 1, From: -1} // path length at start is 1 node
|
||
|
// oh is a heap of nodes "open" for exploration. nodes go on the heap
|
||
|
// when they get an initial or new "g" path distance, and therefore a
|
||
|
// new "f" which serves as priority for exploration.
|
||
|
oh := openHeap{cr}
|
||
|
for len(oh) > 0 {
|
||
|
bestPath := heap.Pop(&oh).(*rNode)
|
||
|
bestNode := bestPath.nx
|
||
|
if bestNode == end {
|
||
|
return f, labels, d[end], true
|
||
|
}
|
||
|
bp := &rp[bestNode]
|
||
|
nextLen := bp.Len + 1
|
||
|
for _, nb := range g[bestNode] {
|
||
|
alt := &r[nb.To]
|
||
|
ap := &rp[alt.nx]
|
||
|
// "g" path distance from start
|
||
|
g := d[bestNode] + w(nb.Label)
|
||
|
if alt.state == reached {
|
||
|
if g > d[nb.To] {
|
||
|
// candidate path to nb is longer than some alternate path
|
||
|
continue
|
||
|
}
|
||
|
if g == d[nb.To] && nextLen >= ap.Len {
|
||
|
// candidate path has identical length of some alternate
|
||
|
// path but it takes no fewer hops.
|
||
|
continue
|
||
|
}
|
||
|
// cool, we found a better way to get to this node.
|
||
|
// record new path data for this node and
|
||
|
// update alt with new data and make sure it's on the heap.
|
||
|
*ap = PathEnd{From: bestNode, Len: nextLen}
|
||
|
labels[nb.To] = nb.Label
|
||
|
d[nb.To] = g
|
||
|
alt.f = g + h(nb.To)
|
||
|
if alt.fx < 0 {
|
||
|
heap.Push(&oh, alt)
|
||
|
} else {
|
||
|
heap.Fix(&oh, alt.fx)
|
||
|
}
|
||
|
} else {
|
||
|
// bestNode being reached for the first time.
|
||
|
*ap = PathEnd{From: bestNode, Len: nextLen}
|
||
|
labels[nb.To] = nb.Label
|
||
|
d[nb.To] = g
|
||
|
alt.f = g + h(nb.To)
|
||
|
alt.state = reached
|
||
|
heap.Push(&oh, alt) // and it's now open for exploration
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return // no path
|
||
|
}
|
||
|
|
||
|
// AStarAPath finds a shortest path using the AStarA algorithm.
|
||
|
//
|
||
|
// This is a convenience method with a simpler result than the AStarA method.
|
||
|
// See documentation on the AStarA method.
|
||
|
//
|
||
|
// If a path is found, the non-nil node path is returned with the total path
|
||
|
// distance. Otherwise the returned path will be nil.
|
||
|
func (g LabeledAdjacencyList) AStarAPath(start, end NI, h Heuristic, w WeightFunc) (LabeledPath, float64) {
|
||
|
f, labels, d, _ := g.AStarA(w, start, end, h)
|
||
|
return f.PathToLabeled(end, labels, nil), d
|
||
|
}
|
||
|
|
||
|
// AStarM is AStarA optimized for monotonic heuristic estimates.
|
||
|
//
|
||
|
// Note that this function requires a monotonic heuristic. Results will
|
||
|
// not be meaningful if argument h is non-monotonic.
|
||
|
//
|
||
|
// See AStarA for general usage. See Heuristic for notes on monotonicity.
|
||
|
func (g LabeledAdjacencyList) AStarM(w WeightFunc, start, end NI, h Heuristic) (f FromList, labels []LI, dist float64, ok bool) {
|
||
|
// NOTE: AStarM is largely code duplicated from AStarA.
|
||
|
// Differences are noted in comments in this method.
|
||
|
|
||
|
f = NewFromList(len(g))
|
||
|
labels = make([]LI, len(g))
|
||
|
d := make([]float64, len(g))
|
||
|
r := make([]rNode, len(g))
|
||
|
for i := range r {
|
||
|
r[i].nx = NI(i)
|
||
|
}
|
||
|
cr := &r[start]
|
||
|
|
||
|
// difference from AStarA:
|
||
|
// instead of a bit to mark a reached node, there are two states,
|
||
|
// open and closed. open marks nodes "open" for exploration.
|
||
|
// nodes are marked open as they are reached, then marked
|
||
|
// closed as they are found to be on the best path.
|
||
|
cr.state = open
|
||
|
|
||
|
cr.f = h(start)
|
||
|
rp := f.Paths
|
||
|
rp[start] = PathEnd{Len: 1, From: -1}
|
||
|
oh := openHeap{cr}
|
||
|
for len(oh) > 0 {
|
||
|
bestPath := heap.Pop(&oh).(*rNode)
|
||
|
bestNode := bestPath.nx
|
||
|
if bestNode == end {
|
||
|
return f, labels, d[end], true
|
||
|
}
|
||
|
|
||
|
// difference from AStarA:
|
||
|
// move nodes to closed list as they are found to be best so far.
|
||
|
bestPath.state = closed
|
||
|
|
||
|
bp := &rp[bestNode]
|
||
|
nextLen := bp.Len + 1
|
||
|
for _, nb := range g[bestNode] {
|
||
|
alt := &r[nb.To]
|
||
|
|
||
|
// difference from AStarA:
|
||
|
// Monotonicity means that f cannot be improved.
|
||
|
if alt.state == closed {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
ap := &rp[alt.nx]
|
||
|
g := d[bestNode] + w(nb.Label)
|
||
|
|
||
|
// difference from AStarA:
|
||
|
// test for open state, not just reached
|
||
|
if alt.state == open {
|
||
|
|
||
|
if g > d[nb.To] {
|
||
|
continue
|
||
|
}
|
||
|
if g == d[nb.To] && nextLen >= ap.Len {
|
||
|
continue
|
||
|
}
|
||
|
*ap = PathEnd{From: bestNode, Len: nextLen}
|
||
|
labels[nb.To] = nb.Label
|
||
|
d[nb.To] = g
|
||
|
alt.f = g + h(nb.To)
|
||
|
|
||
|
// difference from AStarA:
|
||
|
// we know alt was on the heap because we found it marked open
|
||
|
heap.Fix(&oh, alt.fx)
|
||
|
} else {
|
||
|
*ap = PathEnd{From: bestNode, Len: nextLen}
|
||
|
labels[nb.To] = nb.Label
|
||
|
d[nb.To] = g
|
||
|
alt.f = g + h(nb.To)
|
||
|
|
||
|
// difference from AStarA:
|
||
|
// nodes are opened when first reached
|
||
|
alt.state = open
|
||
|
heap.Push(&oh, alt)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// AStarMPath finds a shortest path using the AStarM algorithm.
|
||
|
//
|
||
|
// This is a convenience method with a simpler result than the AStarM method.
|
||
|
// See documentation on the AStarM and AStarA methods.
|
||
|
//
|
||
|
// If a path is found, the non-nil node path is returned with the total path
|
||
|
// distance. Otherwise the returned path will be nil.
|
||
|
func (g LabeledAdjacencyList) AStarMPath(start, end NI, h Heuristic, w WeightFunc) (LabeledPath, float64) {
|
||
|
f, labels, d, _ := g.AStarM(w, start, end, h)
|
||
|
return f.PathToLabeled(end, labels, nil), d
|
||
|
}
|
||
|
|
||
|
// implement container/heap
|
||
|
func (h openHeap) Len() int { return len(h) }
|
||
|
func (h openHeap) Less(i, j int) bool { return h[i].f < h[j].f }
|
||
|
func (h openHeap) Swap(i, j int) {
|
||
|
h[i], h[j] = h[j], h[i]
|
||
|
h[i].fx = i
|
||
|
h[j].fx = j
|
||
|
}
|
||
|
func (p *openHeap) Push(x interface{}) {
|
||
|
h := *p
|
||
|
fx := len(h)
|
||
|
h = append(h, x.(*rNode))
|
||
|
h[fx].fx = fx
|
||
|
*p = h
|
||
|
}
|
||
|
|
||
|
func (p *openHeap) Pop() interface{} {
|
||
|
h := *p
|
||
|
last := len(h) - 1
|
||
|
*p = h[:last]
|
||
|
h[last].fx = -1
|
||
|
return h[last]
|
||
|
}
|
||
|
|
||
|
// BellmanFord finds shortest paths from a start node in a weighted directed
|
||
|
// graph using the Bellman-Ford-Moore algorithm.
|
||
|
//
|
||
|
// WeightFunc w must translate arc labels to arc weights.
|
||
|
// Negative arc weights are allowed but not negative cycles.
|
||
|
// Loops and parallel arcs are allowed.
|
||
|
//
|
||
|
// If the algorithm completes without encountering a negative cycle the method
|
||
|
// returns shortest paths encoded in a FromList, labels and path distances
|
||
|
// indexed by node, and return value end = -1.
|
||
|
//
|
||
|
// If it encounters a negative cycle reachable from start it returns end >= 0.
|
||
|
// In this case the cycle can be obtained by calling f.BellmanFordCycle(end).
|
||
|
//
|
||
|
// Negative cycles are only detected when reachable from start. A negative
|
||
|
// cycle not reachable from start will not prevent the algorithm from finding
|
||
|
// shortest paths from start.
|
||
|
//
|
||
|
// See also NegativeCycle to find a cycle anywhere in the graph, see
|
||
|
// NegativeCycles for enumerating all negative cycles, and see
|
||
|
// HasNegativeCycle for lighter-weight negative cycle detection,
|
||
|
func (g LabeledDirected) BellmanFord(w WeightFunc, start NI) (f FromList, labels []LI, dist []float64, end NI) {
|
||
|
a := g.LabeledAdjacencyList
|
||
|
f = NewFromList(len(a))
|
||
|
labels = make([]LI, len(a))
|
||
|
dist = make([]float64, len(a))
|
||
|
inf := math.Inf(1)
|
||
|
for i := range dist {
|
||
|
dist[i] = inf
|
||
|
}
|
||
|
rp := f.Paths
|
||
|
rp[start] = PathEnd{Len: 1, From: -1}
|
||
|
dist[start] = 0
|
||
|
for _ = range a[1:] {
|
||
|
imp := false
|
||
|
for from, nbs := range a {
|
||
|
fp := &rp[from]
|
||
|
d1 := dist[from]
|
||
|
for _, nb := range nbs {
|
||
|
d2 := d1 + w(nb.Label)
|
||
|
to := &rp[nb.To]
|
||
|
// TODO improve to break ties
|
||
|
if fp.Len > 0 && d2 < dist[nb.To] {
|
||
|
*to = PathEnd{From: NI(from), Len: fp.Len + 1}
|
||
|
labels[nb.To] = nb.Label
|
||
|
dist[nb.To] = d2
|
||
|
imp = true
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if !imp {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
for from, nbs := range a {
|
||
|
d1 := dist[from]
|
||
|
for _, nb := range nbs {
|
||
|
if d1+w(nb.Label) < dist[nb.To] {
|
||
|
// return nb as end of a path with negative cycle at root
|
||
|
return f, labels, dist, NI(from)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return f, labels, dist, -1
|
||
|
}
|
||
|
|
||
|
// BellmanFordCycle decodes a negative cycle detected by BellmanFord.
|
||
|
//
|
||
|
// Receiver f and argument end must be results returned from BellmanFord.
|
||
|
func (f FromList) BellmanFordCycle(end NI) (c []NI) {
|
||
|
p := f.Paths
|
||
|
b := bits.New(len(p))
|
||
|
for b.Bit(int(end)) == 0 {
|
||
|
b.SetBit(int(end), 1)
|
||
|
end = p[end].From
|
||
|
}
|
||
|
for b.Bit(int(end)) == 1 {
|
||
|
c = append(c, end)
|
||
|
b.SetBit(int(end), 0)
|
||
|
end = p[end].From
|
||
|
}
|
||
|
for i, j := 0, len(c)-1; i < j; i, j = i+1, j-1 {
|
||
|
c[i], c[j] = c[j], c[i]
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// HasNegativeCycle returns true if the graph contains any negative cycle.
|
||
|
//
|
||
|
// HasNegativeCycle uses a Bellman-Ford-like algorithm, but finds negative
|
||
|
// cycles anywhere in the graph. Also path information is not computed,
|
||
|
// reducing memory use somewhat compared to BellmanFord.
|
||
|
//
|
||
|
// See also NegativeCycle to obtain the cycle, see NegativeCycles for
|
||
|
// enumerating all negative cycles, and see BellmanFord for single source
|
||
|
// shortest path searches with negative cycle detection.
|
||
|
func (g LabeledDirected) HasNegativeCycle(w WeightFunc) bool {
|
||
|
a := g.LabeledAdjacencyList
|
||
|
dist := make([]float64, len(a))
|
||
|
for _ = range a[1:] {
|
||
|
imp := false
|
||
|
for from, nbs := range a {
|
||
|
d1 := dist[from]
|
||
|
for _, nb := range nbs {
|
||
|
d2 := d1 + w(nb.Label)
|
||
|
if d2 < dist[nb.To] {
|
||
|
dist[nb.To] = d2
|
||
|
imp = true
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if !imp {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
for from, nbs := range a {
|
||
|
d1 := dist[from]
|
||
|
for _, nb := range nbs {
|
||
|
if d1+w(nb.Label) < dist[nb.To] {
|
||
|
return true // negative cycle
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// NegativeCycle finds a negative cycle if one exists.
|
||
|
//
|
||
|
// NegativeCycle uses a Bellman-Ford-like algorithm, but finds negative
|
||
|
// cycles anywhere in the graph. If a negative cycle exists, one will be
|
||
|
// returned. The result is nil if no negative cycle exists.
|
||
|
//
|
||
|
// See also NegativeCycles for enumerating all negative cycles, see
|
||
|
// HasNegativeCycle for lighter-weight cycle detection, and see
|
||
|
// BellmanFord for single source shortest paths, also with negative cycle
|
||
|
// detection.
|
||
|
func (g LabeledDirected) NegativeCycle(w WeightFunc) (c []Half) {
|
||
|
a := g.LabeledAdjacencyList
|
||
|
f := NewFromList(len(a))
|
||
|
p := f.Paths
|
||
|
for n := range p {
|
||
|
p[n] = PathEnd{From: -1, Len: 1}
|
||
|
}
|
||
|
labels := make([]LI, len(a))
|
||
|
dist := make([]float64, len(a))
|
||
|
for _ = range a {
|
||
|
imp := false
|
||
|
for from, nbs := range a {
|
||
|
fp := &p[from]
|
||
|
d1 := dist[from]
|
||
|
for _, nb := range nbs {
|
||
|
d2 := d1 + w(nb.Label)
|
||
|
to := &p[nb.To]
|
||
|
if fp.Len > 0 && d2 < dist[nb.To] {
|
||
|
*to = PathEnd{From: NI(from), Len: fp.Len + 1}
|
||
|
labels[nb.To] = nb.Label
|
||
|
dist[nb.To] = d2
|
||
|
imp = true
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if !imp {
|
||
|
return nil
|
||
|
}
|
||
|
}
|
||
|
vis := bits.New(len(a))
|
||
|
a:
|
||
|
for n := range a {
|
||
|
end := n
|
||
|
b := bits.New(len(a))
|
||
|
for b.Bit(end) == 0 {
|
||
|
if vis.Bit(end) == 1 {
|
||
|
continue a
|
||
|
}
|
||
|
vis.SetBit(end, 1)
|
||
|
b.SetBit(end, 1)
|
||
|
end = int(p[end].From)
|
||
|
if end < 0 {
|
||
|
continue a
|
||
|
}
|
||
|
}
|
||
|
for b.Bit(end) == 1 {
|
||
|
c = append(c, Half{NI(end), labels[end]})
|
||
|
b.SetBit(end, 0)
|
||
|
end = int(p[end].From)
|
||
|
}
|
||
|
for i, j := 0, len(c)-1; i < j; i, j = i+1, j-1 {
|
||
|
c[i], c[j] = c[j], c[i]
|
||
|
}
|
||
|
return c
|
||
|
}
|
||
|
return nil // no negative cycle
|
||
|
}
|
||
|
|
||
|
// DAGMinDistPath finds a single shortest path.
|
||
|
//
|
||
|
// Shortest means minimum sum of arc weights.
|
||
|
//
|
||
|
// Returned is the path and distance as returned by FromList.PathTo.
|
||
|
//
|
||
|
// This is a convenience method. See DAGOptimalPaths for more options.
|
||
|
func (g LabeledDirected) DAGMinDistPath(start, end NI, w WeightFunc) (LabeledPath, float64, error) {
|
||
|
return g.dagPath(start, end, w, false)
|
||
|
}
|
||
|
|
||
|
// DAGMaxDistPath finds a single longest path.
|
||
|
//
|
||
|
// Longest means maximum sum of arc weights.
|
||
|
//
|
||
|
// Returned is the path and distance as returned by FromList.PathTo.
|
||
|
//
|
||
|
// This is a convenience method. See DAGOptimalPaths for more options.
|
||
|
func (g LabeledDirected) DAGMaxDistPath(start, end NI, w WeightFunc) (LabeledPath, float64, error) {
|
||
|
return g.dagPath(start, end, w, true)
|
||
|
}
|
||
|
|
||
|
func (g LabeledDirected) dagPath(start, end NI, w WeightFunc, longest bool) (LabeledPath, float64, error) {
|
||
|
o, _ := g.Topological()
|
||
|
if o == nil {
|
||
|
return LabeledPath{}, 0, fmt.Errorf("not a DAG")
|
||
|
}
|
||
|
f, labels, dist, _ := g.DAGOptimalPaths(start, end, o, w, longest)
|
||
|
if f.Paths[end].Len == 0 {
|
||
|
return LabeledPath{}, 0, fmt.Errorf("no path from %d to %d", start, end)
|
||
|
}
|
||
|
return f.PathToLabeled(end, labels, nil), dist[end], nil
|
||
|
}
|
||
|
|
||
|
// DAGOptimalPaths finds either longest or shortest distance paths in a
|
||
|
// directed acyclic graph.
|
||
|
//
|
||
|
// Path distance is the sum of arc weights on the path.
|
||
|
// Negative arc weights are allowed.
|
||
|
// Where multiple paths exist with the same distance, the path length
|
||
|
// (number of nodes) is used as a tie breaker.
|
||
|
//
|
||
|
// Receiver g must be a directed acyclic graph. Argument o must be either nil
|
||
|
// or a topological ordering of g. If nil, a topologcal ordering is
|
||
|
// computed internally. If longest is true, an optimal path is a longest
|
||
|
// distance path. Otherwise it is a shortest distance path.
|
||
|
//
|
||
|
// Argument start is the start node for paths, end is the end node. If end
|
||
|
// is a valid node number, the method returns as soon as the optimal path
|
||
|
// to end is found. If end is -1, all optimal paths from start are found.
|
||
|
//
|
||
|
// Paths and path distances are encoded in the returned FromList, labels,
|
||
|
// and dist slices. The number of nodes reached is returned as nReached.
|
||
|
func (g LabeledDirected) DAGOptimalPaths(start, end NI, ordering []NI, w WeightFunc, longest bool) (f FromList, labels []LI, dist []float64, nReached int) {
|
||
|
a := g.LabeledAdjacencyList
|
||
|
f = NewFromList(len(a))
|
||
|
f.Leaves = bits.New(len(a))
|
||
|
labels = make([]LI, len(a))
|
||
|
dist = make([]float64, len(a))
|
||
|
if ordering == nil {
|
||
|
ordering, _ = g.Topological()
|
||
|
}
|
||
|
// search ordering for start
|
||
|
o := 0
|
||
|
for ordering[o] != start {
|
||
|
o++
|
||
|
}
|
||
|
var fBetter func(cand, ext float64) bool
|
||
|
var iBetter func(cand, ext int) bool
|
||
|
if longest {
|
||
|
fBetter = func(cand, ext float64) bool { return cand > ext }
|
||
|
iBetter = func(cand, ext int) bool { return cand > ext }
|
||
|
} else {
|
||
|
fBetter = func(cand, ext float64) bool { return cand < ext }
|
||
|
iBetter = func(cand, ext int) bool { return cand < ext }
|
||
|
}
|
||
|
p := f.Paths
|
||
|
p[start] = PathEnd{From: -1, Len: 1}
|
||
|
f.MaxLen = 1
|
||
|
leaves := &f.Leaves
|
||
|
leaves.SetBit(int(start), 1)
|
||
|
nReached = 1
|
||
|
for n := start; n != end; n = ordering[o] {
|
||
|
if p[n].Len > 0 && len(a[n]) > 0 {
|
||
|
nDist := dist[n]
|
||
|
candLen := p[n].Len + 1 // len for any candidate arc followed from n
|
||
|
for _, to := range a[n] {
|
||
|
leaves.SetBit(int(to.To), 1)
|
||
|
candDist := nDist + w(to.Label)
|
||
|
switch {
|
||
|
case p[to.To].Len == 0: // first path to node to.To
|
||
|
nReached++
|
||
|
case fBetter(candDist, dist[to.To]): // better distance
|
||
|
case candDist == dist[to.To] && iBetter(candLen, p[to.To].Len): // same distance but better path length
|
||
|
default:
|
||
|
continue
|
||
|
}
|
||
|
dist[to.To] = candDist
|
||
|
p[to.To] = PathEnd{From: n, Len: candLen}
|
||
|
labels[to.To] = to.Label
|
||
|
if candLen > f.MaxLen {
|
||
|
f.MaxLen = candLen
|
||
|
}
|
||
|
}
|
||
|
leaves.SetBit(int(n), 0)
|
||
|
}
|
||
|
o++
|
||
|
if o == len(ordering) {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Dijkstra finds shortest paths by Dijkstra's algorithm.
|
||
|
//
|
||
|
// Shortest means shortest distance where distance is the
|
||
|
// sum of arc weights. Where multiple paths exist with the same distance,
|
||
|
// a path with the minimum number of nodes is returned.
|
||
|
//
|
||
|
// As usual for Dijkstra's algorithm, arc weights must be non-negative.
|
||
|
// Graphs may be directed or undirected. Loops and parallel arcs are
|
||
|
// allowed.
|
||
|
//
|
||
|
// Paths and path distances are encoded in the returned FromList and dist
|
||
|
// slice. Returned labels are the labels of arcs followed to each node.
|
||
|
// The number of nodes reached is returned as nReached.
|
||
|
func (g LabeledAdjacencyList) Dijkstra(start, end NI, w WeightFunc) (f FromList, labels []LI, dist []float64, nReached int) {
|
||
|
r := make([]tentResult, len(g))
|
||
|
for i := range r {
|
||
|
r[i].nx = NI(i)
|
||
|
}
|
||
|
f = NewFromList(len(g))
|
||
|
labels = make([]LI, len(g))
|
||
|
dist = make([]float64, len(g))
|
||
|
current := start
|
||
|
rp := f.Paths
|
||
|
rp[current] = PathEnd{Len: 1, From: -1} // path length at start is 1 node
|
||
|
cr := &r[current]
|
||
|
cr.dist = 0 // distance at start is 0.
|
||
|
cr.done = true // mark start done. it skips the heap.
|
||
|
nDone := 1 // accumulated for a return value
|
||
|
var t tent
|
||
|
for current != end {
|
||
|
nextLen := rp[current].Len + 1
|
||
|
for _, nb := range g[current] {
|
||
|
// d.arcVis++
|
||
|
hr := &r[nb.To]
|
||
|
if hr.done {
|
||
|
continue // skip nodes already done
|
||
|
}
|
||
|
dist := cr.dist + w(nb.Label)
|
||
|
vl := rp[nb.To].Len
|
||
|
visited := vl > 0
|
||
|
if visited {
|
||
|
if dist > hr.dist {
|
||
|
continue // distance is worse
|
||
|
}
|
||
|
// tie breaker is a nice touch and doesn't seem to
|
||
|
// impact performance much.
|
||
|
if dist == hr.dist && nextLen >= vl {
|
||
|
continue // distance same, but number of nodes is no better
|
||
|
}
|
||
|
}
|
||
|
// the path through current to this node is shortest so far.
|
||
|
// record new path data for this node and update tentative set.
|
||
|
hr.dist = dist
|
||
|
rp[nb.To].Len = nextLen
|
||
|
rp[nb.To].From = current
|
||
|
labels[nb.To] = nb.Label
|
||
|
if visited {
|
||
|
heap.Fix(&t, hr.fx)
|
||
|
} else {
|
||
|
heap.Push(&t, hr)
|
||
|
}
|
||
|
}
|
||
|
//d.ndVis++
|
||
|
if len(t) == 0 {
|
||
|
// no more reachable nodes. AllPaths normal return
|
||
|
return f, labels, dist, nDone
|
||
|
}
|
||
|
// new current is node with smallest tentative distance
|
||
|
cr = heap.Pop(&t).(*tentResult)
|
||
|
cr.done = true
|
||
|
nDone++
|
||
|
current = cr.nx
|
||
|
dist[current] = cr.dist // store final distance
|
||
|
}
|
||
|
// normal return for single shortest path search
|
||
|
return f, labels, dist, -1
|
||
|
}
|
||
|
|
||
|
// DijkstraPath finds a single shortest path.
|
||
|
//
|
||
|
// Returned is the path as returned by FromList.LabeledPathTo and the total
|
||
|
// path distance.
|
||
|
func (g LabeledAdjacencyList) DijkstraPath(start, end NI, w WeightFunc) (LabeledPath, float64) {
|
||
|
f, labels, dist, _ := g.Dijkstra(start, end, w)
|
||
|
return f.PathToLabeled(end, labels, nil), dist[end]
|
||
|
}
|
||
|
|
||
|
// tent implements container/heap
|
||
|
func (t tent) Len() int { return len(t) }
|
||
|
func (t tent) Less(i, j int) bool { return t[i].dist < t[j].dist }
|
||
|
func (t tent) Swap(i, j int) {
|
||
|
t[i], t[j] = t[j], t[i]
|
||
|
t[i].fx = i
|
||
|
t[j].fx = j
|
||
|
}
|
||
|
func (s *tent) Push(x interface{}) {
|
||
|
nd := x.(*tentResult)
|
||
|
nd.fx = len(*s)
|
||
|
*s = append(*s, nd)
|
||
|
}
|
||
|
func (s *tent) Pop() interface{} {
|
||
|
t := *s
|
||
|
last := len(t) - 1
|
||
|
*s = t[:last]
|
||
|
return t[last]
|
||
|
}
|
||
|
|
||
|
type tentResult struct {
|
||
|
dist float64 // tentative distance, sum of arc weights
|
||
|
nx NI // slice index, "node id"
|
||
|
fx int // heap.Fix index
|
||
|
done bool
|
||
|
}
|
||
|
|
||
|
type tent []*tentResult
|