act/vendor/github.com/soniakeys/graph/sssp.go
2019-02-06 22:36:13 -08:00

761 lines
22 KiB
Go

// Copyright 2013 Sonia Keys
// License MIT: http://opensource.org/licenses/MIT
package graph
import (
"container/heap"
"fmt"
"math"
"github.com/soniakeys/bits"
)
// rNode holds data for a "reached" node
type rNode struct {
nx NI
state int8 // state constants defined below
f float64 // "g+h", path dist + heuristic estimate
fx int // heap.Fix index
}
// for rNode.state
const (
unreached = 0
reached = 1
open = 1
closed = 2
)
type openHeap []*rNode
// A Heuristic is defined on a specific end node. The function
// returns an estimate of the path distance from node argument
// "from" to the end node. Two subclasses of heuristics are "admissible"
// and "monotonic."
//
// Admissible means the value returned is guaranteed to be less than or
// equal to the actual shortest path distance from the node to end.
//
// An admissible estimate may further be monotonic.
// Monotonic means that for any neighboring nodes A and B with half arc aB
// leading from A to B, and for heuristic h defined on some end node, then
// h(A) <= aB.ArcWeight + h(B).
//
// See AStarA for additional notes on implementing heuristic functions for
// AStar search methods.
type Heuristic func(from NI) float64
// Admissible returns true if heuristic h is admissible on graph g relative to
// the given end node.
//
// If h is inadmissible, the string result describes a counter example.
func (h Heuristic) Admissible(g LabeledAdjacencyList, w WeightFunc, end NI) (bool, string) {
// invert graph
inv := make(LabeledAdjacencyList, len(g))
for from, nbs := range g {
for _, nb := range nbs {
inv[nb.To] = append(inv[nb.To],
Half{To: NI(from), Label: nb.Label})
}
}
// run dijkstra
// Dijkstra.AllPaths takes a start node but after inverting the graph
// argument end now represents the start node of the inverted graph.
f, _, dist, _ := inv.Dijkstra(end, -1, w)
// compare h to found shortest paths
for n := range inv {
if f.Paths[n].Len == 0 {
continue // no path, any heuristic estimate is fine.
}
if !(h(NI(n)) <= dist[n]) {
return false, fmt.Sprintf("h(%d) = %g, "+
"required to be <= found shortest path (%g)",
n, h(NI(n)), dist[n])
}
}
return true, ""
}
// Monotonic returns true if heuristic h is monotonic on weighted graph g.
//
// If h is non-monotonic, the string result describes a counter example.
func (h Heuristic) Monotonic(g LabeledAdjacencyList, w WeightFunc) (bool, string) {
// precompute
hv := make([]float64, len(g))
for n := range g {
hv[n] = h(NI(n))
}
// iterate over all edges
for from, nbs := range g {
for _, nb := range nbs {
arcWeight := w(nb.Label)
if !(hv[from] <= arcWeight+hv[nb.To]) {
return false, fmt.Sprintf("h(%d) = %g, "+
"required to be <= arc weight + h(%d) (= %g + %g = %g)",
from, hv[from],
nb.To, arcWeight, hv[nb.To], arcWeight+hv[nb.To])
}
}
}
return true, ""
}
// AStarA finds a path between two nodes.
//
// AStarA implements both algorithm A and algorithm A*. The difference in the
// two algorithms is strictly in the heuristic estimate returned by argument h.
// If h is an "admissible" heuristic estimate, then the algorithm is termed A*,
// otherwise it is algorithm A.
//
// Like Dijkstra's algorithm, AStarA with an admissible heuristic finds the
// shortest path between start and end. AStarA generally runs faster than
// Dijkstra though, by using the heuristic distance estimate.
//
// AStarA with an inadmissible heuristic becomes algorithm A. Algorithm A
// will find a path, but it is not guaranteed to be the shortest path.
// The heuristic still guides the search however, so a nearly admissible
// heuristic is likely to find a very good path, if not the best. Quality
// of the path returned degrades gracefully with the quality of the heuristic.
//
// The heuristic function h should ideally be fairly inexpensive. AStarA
// may call it more than once for the same node, especially as graph density
// increases. In some cases it may be worth the effort to memoize or
// precompute values.
//
// Argument g is the graph to be searched, with arc weights returned by w.
// As usual for AStar, arc weights must be non-negative.
// Graphs may be directed or undirected.
//
// If AStarA finds a path it returns a FromList encoding the path, the arc
// labels for path nodes, the total path distance, and ok = true.
// Otherwise it returns ok = false.
func (g LabeledAdjacencyList) AStarA(w WeightFunc, start, end NI, h Heuristic) (f FromList, labels []LI, dist float64, ok bool) {
// NOTE: AStarM is largely duplicate code.
f = NewFromList(len(g))
labels = make([]LI, len(g))
d := make([]float64, len(g))
r := make([]rNode, len(g))
for i := range r {
r[i].nx = NI(i)
}
// start node is reached initially
cr := &r[start]
cr.state = reached
cr.f = h(start) // total path estimate is estimate from start
rp := f.Paths
rp[start] = PathEnd{Len: 1, From: -1} // path length at start is 1 node
// oh is a heap of nodes "open" for exploration. nodes go on the heap
// when they get an initial or new "g" path distance, and therefore a
// new "f" which serves as priority for exploration.
oh := openHeap{cr}
for len(oh) > 0 {
bestPath := heap.Pop(&oh).(*rNode)
bestNode := bestPath.nx
if bestNode == end {
return f, labels, d[end], true
}
bp := &rp[bestNode]
nextLen := bp.Len + 1
for _, nb := range g[bestNode] {
alt := &r[nb.To]
ap := &rp[alt.nx]
// "g" path distance from start
g := d[bestNode] + w(nb.Label)
if alt.state == reached {
if g > d[nb.To] {
// candidate path to nb is longer than some alternate path
continue
}
if g == d[nb.To] && nextLen >= ap.Len {
// candidate path has identical length of some alternate
// path but it takes no fewer hops.
continue
}
// cool, we found a better way to get to this node.
// record new path data for this node and
// update alt with new data and make sure it's on the heap.
*ap = PathEnd{From: bestNode, Len: nextLen}
labels[nb.To] = nb.Label
d[nb.To] = g
alt.f = g + h(nb.To)
if alt.fx < 0 {
heap.Push(&oh, alt)
} else {
heap.Fix(&oh, alt.fx)
}
} else {
// bestNode being reached for the first time.
*ap = PathEnd{From: bestNode, Len: nextLen}
labels[nb.To] = nb.Label
d[nb.To] = g
alt.f = g + h(nb.To)
alt.state = reached
heap.Push(&oh, alt) // and it's now open for exploration
}
}
}
return // no path
}
// AStarAPath finds a shortest path using the AStarA algorithm.
//
// This is a convenience method with a simpler result than the AStarA method.
// See documentation on the AStarA method.
//
// If a path is found, the non-nil node path is returned with the total path
// distance. Otherwise the returned path will be nil.
func (g LabeledAdjacencyList) AStarAPath(start, end NI, h Heuristic, w WeightFunc) (LabeledPath, float64) {
f, labels, d, _ := g.AStarA(w, start, end, h)
return f.PathToLabeled(end, labels, nil), d
}
// AStarM is AStarA optimized for monotonic heuristic estimates.
//
// Note that this function requires a monotonic heuristic. Results will
// not be meaningful if argument h is non-monotonic.
//
// See AStarA for general usage. See Heuristic for notes on monotonicity.
func (g LabeledAdjacencyList) AStarM(w WeightFunc, start, end NI, h Heuristic) (f FromList, labels []LI, dist float64, ok bool) {
// NOTE: AStarM is largely code duplicated from AStarA.
// Differences are noted in comments in this method.
f = NewFromList(len(g))
labels = make([]LI, len(g))
d := make([]float64, len(g))
r := make([]rNode, len(g))
for i := range r {
r[i].nx = NI(i)
}
cr := &r[start]
// difference from AStarA:
// instead of a bit to mark a reached node, there are two states,
// open and closed. open marks nodes "open" for exploration.
// nodes are marked open as they are reached, then marked
// closed as they are found to be on the best path.
cr.state = open
cr.f = h(start)
rp := f.Paths
rp[start] = PathEnd{Len: 1, From: -1}
oh := openHeap{cr}
for len(oh) > 0 {
bestPath := heap.Pop(&oh).(*rNode)
bestNode := bestPath.nx
if bestNode == end {
return f, labels, d[end], true
}
// difference from AStarA:
// move nodes to closed list as they are found to be best so far.
bestPath.state = closed
bp := &rp[bestNode]
nextLen := bp.Len + 1
for _, nb := range g[bestNode] {
alt := &r[nb.To]
// difference from AStarA:
// Monotonicity means that f cannot be improved.
if alt.state == closed {
continue
}
ap := &rp[alt.nx]
g := d[bestNode] + w(nb.Label)
// difference from AStarA:
// test for open state, not just reached
if alt.state == open {
if g > d[nb.To] {
continue
}
if g == d[nb.To] && nextLen >= ap.Len {
continue
}
*ap = PathEnd{From: bestNode, Len: nextLen}
labels[nb.To] = nb.Label
d[nb.To] = g
alt.f = g + h(nb.To)
// difference from AStarA:
// we know alt was on the heap because we found it marked open
heap.Fix(&oh, alt.fx)
} else {
*ap = PathEnd{From: bestNode, Len: nextLen}
labels[nb.To] = nb.Label
d[nb.To] = g
alt.f = g + h(nb.To)
// difference from AStarA:
// nodes are opened when first reached
alt.state = open
heap.Push(&oh, alt)
}
}
}
return
}
// AStarMPath finds a shortest path using the AStarM algorithm.
//
// This is a convenience method with a simpler result than the AStarM method.
// See documentation on the AStarM and AStarA methods.
//
// If a path is found, the non-nil node path is returned with the total path
// distance. Otherwise the returned path will be nil.
func (g LabeledAdjacencyList) AStarMPath(start, end NI, h Heuristic, w WeightFunc) (LabeledPath, float64) {
f, labels, d, _ := g.AStarM(w, start, end, h)
return f.PathToLabeled(end, labels, nil), d
}
// implement container/heap
func (h openHeap) Len() int { return len(h) }
func (h openHeap) Less(i, j int) bool { return h[i].f < h[j].f }
func (h openHeap) Swap(i, j int) {
h[i], h[j] = h[j], h[i]
h[i].fx = i
h[j].fx = j
}
func (p *openHeap) Push(x interface{}) {
h := *p
fx := len(h)
h = append(h, x.(*rNode))
h[fx].fx = fx
*p = h
}
func (p *openHeap) Pop() interface{} {
h := *p
last := len(h) - 1
*p = h[:last]
h[last].fx = -1
return h[last]
}
// BellmanFord finds shortest paths from a start node in a weighted directed
// graph using the Bellman-Ford-Moore algorithm.
//
// WeightFunc w must translate arc labels to arc weights.
// Negative arc weights are allowed but not negative cycles.
// Loops and parallel arcs are allowed.
//
// If the algorithm completes without encountering a negative cycle the method
// returns shortest paths encoded in a FromList, labels and path distances
// indexed by node, and return value end = -1.
//
// If it encounters a negative cycle reachable from start it returns end >= 0.
// In this case the cycle can be obtained by calling f.BellmanFordCycle(end).
//
// Negative cycles are only detected when reachable from start. A negative
// cycle not reachable from start will not prevent the algorithm from finding
// shortest paths from start.
//
// See also NegativeCycle to find a cycle anywhere in the graph, see
// NegativeCycles for enumerating all negative cycles, and see
// HasNegativeCycle for lighter-weight negative cycle detection,
func (g LabeledDirected) BellmanFord(w WeightFunc, start NI) (f FromList, labels []LI, dist []float64, end NI) {
a := g.LabeledAdjacencyList
f = NewFromList(len(a))
labels = make([]LI, len(a))
dist = make([]float64, len(a))
inf := math.Inf(1)
for i := range dist {
dist[i] = inf
}
rp := f.Paths
rp[start] = PathEnd{Len: 1, From: -1}
dist[start] = 0
for _ = range a[1:] {
imp := false
for from, nbs := range a {
fp := &rp[from]
d1 := dist[from]
for _, nb := range nbs {
d2 := d1 + w(nb.Label)
to := &rp[nb.To]
// TODO improve to break ties
if fp.Len > 0 && d2 < dist[nb.To] {
*to = PathEnd{From: NI(from), Len: fp.Len + 1}
labels[nb.To] = nb.Label
dist[nb.To] = d2
imp = true
}
}
}
if !imp {
break
}
}
for from, nbs := range a {
d1 := dist[from]
for _, nb := range nbs {
if d1+w(nb.Label) < dist[nb.To] {
// return nb as end of a path with negative cycle at root
return f, labels, dist, NI(from)
}
}
}
return f, labels, dist, -1
}
// BellmanFordCycle decodes a negative cycle detected by BellmanFord.
//
// Receiver f and argument end must be results returned from BellmanFord.
func (f FromList) BellmanFordCycle(end NI) (c []NI) {
p := f.Paths
b := bits.New(len(p))
for b.Bit(int(end)) == 0 {
b.SetBit(int(end), 1)
end = p[end].From
}
for b.Bit(int(end)) == 1 {
c = append(c, end)
b.SetBit(int(end), 0)
end = p[end].From
}
for i, j := 0, len(c)-1; i < j; i, j = i+1, j-1 {
c[i], c[j] = c[j], c[i]
}
return
}
// HasNegativeCycle returns true if the graph contains any negative cycle.
//
// HasNegativeCycle uses a Bellman-Ford-like algorithm, but finds negative
// cycles anywhere in the graph. Also path information is not computed,
// reducing memory use somewhat compared to BellmanFord.
//
// See also NegativeCycle to obtain the cycle, see NegativeCycles for
// enumerating all negative cycles, and see BellmanFord for single source
// shortest path searches with negative cycle detection.
func (g LabeledDirected) HasNegativeCycle(w WeightFunc) bool {
a := g.LabeledAdjacencyList
dist := make([]float64, len(a))
for _ = range a[1:] {
imp := false
for from, nbs := range a {
d1 := dist[from]
for _, nb := range nbs {
d2 := d1 + w(nb.Label)
if d2 < dist[nb.To] {
dist[nb.To] = d2
imp = true
}
}
}
if !imp {
break
}
}
for from, nbs := range a {
d1 := dist[from]
for _, nb := range nbs {
if d1+w(nb.Label) < dist[nb.To] {
return true // negative cycle
}
}
}
return false
}
// NegativeCycle finds a negative cycle if one exists.
//
// NegativeCycle uses a Bellman-Ford-like algorithm, but finds negative
// cycles anywhere in the graph. If a negative cycle exists, one will be
// returned. The result is nil if no negative cycle exists.
//
// See also NegativeCycles for enumerating all negative cycles, see
// HasNegativeCycle for lighter-weight cycle detection, and see
// BellmanFord for single source shortest paths, also with negative cycle
// detection.
func (g LabeledDirected) NegativeCycle(w WeightFunc) (c []Half) {
a := g.LabeledAdjacencyList
f := NewFromList(len(a))
p := f.Paths
for n := range p {
p[n] = PathEnd{From: -1, Len: 1}
}
labels := make([]LI, len(a))
dist := make([]float64, len(a))
for _ = range a {
imp := false
for from, nbs := range a {
fp := &p[from]
d1 := dist[from]
for _, nb := range nbs {
d2 := d1 + w(nb.Label)
to := &p[nb.To]
if fp.Len > 0 && d2 < dist[nb.To] {
*to = PathEnd{From: NI(from), Len: fp.Len + 1}
labels[nb.To] = nb.Label
dist[nb.To] = d2
imp = true
}
}
}
if !imp {
return nil
}
}
vis := bits.New(len(a))
a:
for n := range a {
end := n
b := bits.New(len(a))
for b.Bit(end) == 0 {
if vis.Bit(end) == 1 {
continue a
}
vis.SetBit(end, 1)
b.SetBit(end, 1)
end = int(p[end].From)
if end < 0 {
continue a
}
}
for b.Bit(end) == 1 {
c = append(c, Half{NI(end), labels[end]})
b.SetBit(end, 0)
end = int(p[end].From)
}
for i, j := 0, len(c)-1; i < j; i, j = i+1, j-1 {
c[i], c[j] = c[j], c[i]
}
return c
}
return nil // no negative cycle
}
// DAGMinDistPath finds a single shortest path.
//
// Shortest means minimum sum of arc weights.
//
// Returned is the path and distance as returned by FromList.PathTo.
//
// This is a convenience method. See DAGOptimalPaths for more options.
func (g LabeledDirected) DAGMinDistPath(start, end NI, w WeightFunc) (LabeledPath, float64, error) {
return g.dagPath(start, end, w, false)
}
// DAGMaxDistPath finds a single longest path.
//
// Longest means maximum sum of arc weights.
//
// Returned is the path and distance as returned by FromList.PathTo.
//
// This is a convenience method. See DAGOptimalPaths for more options.
func (g LabeledDirected) DAGMaxDistPath(start, end NI, w WeightFunc) (LabeledPath, float64, error) {
return g.dagPath(start, end, w, true)
}
func (g LabeledDirected) dagPath(start, end NI, w WeightFunc, longest bool) (LabeledPath, float64, error) {
o, _ := g.Topological()
if o == nil {
return LabeledPath{}, 0, fmt.Errorf("not a DAG")
}
f, labels, dist, _ := g.DAGOptimalPaths(start, end, o, w, longest)
if f.Paths[end].Len == 0 {
return LabeledPath{}, 0, fmt.Errorf("no path from %d to %d", start, end)
}
return f.PathToLabeled(end, labels, nil), dist[end], nil
}
// DAGOptimalPaths finds either longest or shortest distance paths in a
// directed acyclic graph.
//
// Path distance is the sum of arc weights on the path.
// Negative arc weights are allowed.
// Where multiple paths exist with the same distance, the path length
// (number of nodes) is used as a tie breaker.
//
// Receiver g must be a directed acyclic graph. Argument o must be either nil
// or a topological ordering of g. If nil, a topologcal ordering is
// computed internally. If longest is true, an optimal path is a longest
// distance path. Otherwise it is a shortest distance path.
//
// Argument start is the start node for paths, end is the end node. If end
// is a valid node number, the method returns as soon as the optimal path
// to end is found. If end is -1, all optimal paths from start are found.
//
// Paths and path distances are encoded in the returned FromList, labels,
// and dist slices. The number of nodes reached is returned as nReached.
func (g LabeledDirected) DAGOptimalPaths(start, end NI, ordering []NI, w WeightFunc, longest bool) (f FromList, labels []LI, dist []float64, nReached int) {
a := g.LabeledAdjacencyList
f = NewFromList(len(a))
f.Leaves = bits.New(len(a))
labels = make([]LI, len(a))
dist = make([]float64, len(a))
if ordering == nil {
ordering, _ = g.Topological()
}
// search ordering for start
o := 0
for ordering[o] != start {
o++
}
var fBetter func(cand, ext float64) bool
var iBetter func(cand, ext int) bool
if longest {
fBetter = func(cand, ext float64) bool { return cand > ext }
iBetter = func(cand, ext int) bool { return cand > ext }
} else {
fBetter = func(cand, ext float64) bool { return cand < ext }
iBetter = func(cand, ext int) bool { return cand < ext }
}
p := f.Paths
p[start] = PathEnd{From: -1, Len: 1}
f.MaxLen = 1
leaves := &f.Leaves
leaves.SetBit(int(start), 1)
nReached = 1
for n := start; n != end; n = ordering[o] {
if p[n].Len > 0 && len(a[n]) > 0 {
nDist := dist[n]
candLen := p[n].Len + 1 // len for any candidate arc followed from n
for _, to := range a[n] {
leaves.SetBit(int(to.To), 1)
candDist := nDist + w(to.Label)
switch {
case p[to.To].Len == 0: // first path to node to.To
nReached++
case fBetter(candDist, dist[to.To]): // better distance
case candDist == dist[to.To] && iBetter(candLen, p[to.To].Len): // same distance but better path length
default:
continue
}
dist[to.To] = candDist
p[to.To] = PathEnd{From: n, Len: candLen}
labels[to.To] = to.Label
if candLen > f.MaxLen {
f.MaxLen = candLen
}
}
leaves.SetBit(int(n), 0)
}
o++
if o == len(ordering) {
break
}
}
return
}
// Dijkstra finds shortest paths by Dijkstra's algorithm.
//
// Shortest means shortest distance where distance is the
// sum of arc weights. Where multiple paths exist with the same distance,
// a path with the minimum number of nodes is returned.
//
// As usual for Dijkstra's algorithm, arc weights must be non-negative.
// Graphs may be directed or undirected. Loops and parallel arcs are
// allowed.
//
// Paths and path distances are encoded in the returned FromList and dist
// slice. Returned labels are the labels of arcs followed to each node.
// The number of nodes reached is returned as nReached.
func (g LabeledAdjacencyList) Dijkstra(start, end NI, w WeightFunc) (f FromList, labels []LI, dist []float64, nReached int) {
r := make([]tentResult, len(g))
for i := range r {
r[i].nx = NI(i)
}
f = NewFromList(len(g))
labels = make([]LI, len(g))
dist = make([]float64, len(g))
current := start
rp := f.Paths
rp[current] = PathEnd{Len: 1, From: -1} // path length at start is 1 node
cr := &r[current]
cr.dist = 0 // distance at start is 0.
cr.done = true // mark start done. it skips the heap.
nDone := 1 // accumulated for a return value
var t tent
for current != end {
nextLen := rp[current].Len + 1
for _, nb := range g[current] {
// d.arcVis++
hr := &r[nb.To]
if hr.done {
continue // skip nodes already done
}
dist := cr.dist + w(nb.Label)
vl := rp[nb.To].Len
visited := vl > 0
if visited {
if dist > hr.dist {
continue // distance is worse
}
// tie breaker is a nice touch and doesn't seem to
// impact performance much.
if dist == hr.dist && nextLen >= vl {
continue // distance same, but number of nodes is no better
}
}
// the path through current to this node is shortest so far.
// record new path data for this node and update tentative set.
hr.dist = dist
rp[nb.To].Len = nextLen
rp[nb.To].From = current
labels[nb.To] = nb.Label
if visited {
heap.Fix(&t, hr.fx)
} else {
heap.Push(&t, hr)
}
}
//d.ndVis++
if len(t) == 0 {
// no more reachable nodes. AllPaths normal return
return f, labels, dist, nDone
}
// new current is node with smallest tentative distance
cr = heap.Pop(&t).(*tentResult)
cr.done = true
nDone++
current = cr.nx
dist[current] = cr.dist // store final distance
}
// normal return for single shortest path search
return f, labels, dist, -1
}
// DijkstraPath finds a single shortest path.
//
// Returned is the path as returned by FromList.LabeledPathTo and the total
// path distance.
func (g LabeledAdjacencyList) DijkstraPath(start, end NI, w WeightFunc) (LabeledPath, float64) {
f, labels, dist, _ := g.Dijkstra(start, end, w)
return f.PathToLabeled(end, labels, nil), dist[end]
}
// tent implements container/heap
func (t tent) Len() int { return len(t) }
func (t tent) Less(i, j int) bool { return t[i].dist < t[j].dist }
func (t tent) Swap(i, j int) {
t[i], t[j] = t[j], t[i]
t[i].fx = i
t[j].fx = j
}
func (s *tent) Push(x interface{}) {
nd := x.(*tentResult)
nd.fx = len(*s)
*s = append(*s, nd)
}
func (s *tent) Pop() interface{} {
t := *s
last := len(t) - 1
*s = t[:last]
return t[last]
}
type tentResult struct {
dist float64 // tentative distance, sum of arc weights
nx NI // slice index, "node id"
fx int // heap.Fix index
done bool
}
type tent []*tentResult