act/vendor/github.com/soniakeys/graph/random.go
2019-02-06 22:36:13 -08:00

708 lines
20 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2016 Sonia Keys
// License MIT: https://opensource.org/licenses/MIT
package graph
import (
"errors"
"math"
"math/rand"
"github.com/soniakeys/bits"
)
// ChungLu constructs a random simple undirected graph.
//
// The Chung Lu model is similar to a "configuration model" where each
// node has a specified degree. In the Chung Lu model the degree specified
// for each node is taken as an expected degree, not an exact degree.
//
// Argument w is "weight," the expected degree for each node.
// The values of w must be given in decreasing order.
//
// The constructed graph will have node 0 with expected degree w[0] and so on
// so degree will decrease with node number. To randomize degree across
// node numbers, consider using the Permute method with a rand.Perm.
//
// Also returned is the actual size m of constructed graph g.
//
// If Rand r is nil, the rand package default shared source is used.
func ChungLu(w []float64, rr *rand.Rand) (g Undirected, m int) {
// Ref: "Efficient Generation of Networks with Given Expected Degrees"
// Joel C. Miller and Aric Hagberg
// accessed at http://aric.hagberg.org/papers/miller-2011-efficient.pdf
rf := rand.Float64
if rr != nil {
rf = rr.Float64
}
a := make(AdjacencyList, len(w))
S := 0.
for i := len(w) - 1; i >= 0; i-- {
S += w[i]
}
for u := 0; u < len(w)-1; u++ {
v := u + 1
p := w[u] * w[v] / S
if p > 1 {
p = 1
}
for v < len(w) && p > 0 {
if p != 1 {
v += int(math.Log(rf()) / math.Log(1-p))
}
if v < len(w) {
q := w[u] * w[v] / S
if q > 1 {
q = 1
}
if rf() < q/p {
a[u] = append(a[u], NI(v))
a[v] = append(a[v], NI(u))
m++
}
p = q
v++
}
}
}
return Undirected{a}, m
}
// Euclidean generates a random simple graph on the Euclidean plane.
//
// Nodes are associated with coordinates uniformly distributed on a unit
// square. Arcs are added between random nodes with a bias toward connecting
// nearer nodes.
//
// Unfortunately the function has a few "knobs".
// The returned graph will have order nNodes and arc size nArcs. The affinity
// argument controls the bias toward connecting nearer nodes. The function
// selects random pairs of nodes as a candidate arc then rejects the candidate
// if the nodes fail an affinity test. Also parallel arcs are rejected.
// As more affine or denser graphs are requested, rejections increase,
// increasing run time. The patience argument controls the number of arc
// rejections allowed before the function gives up and returns an error.
// Note that higher affinity will require more patience and that some
// combinations of nNodes and nArcs cannot be achieved with any amount of
// patience given that the returned graph must be simple.
//
// If Rand r is nil, the rand package default shared source is used.
//
// Returned is a directed simple graph and associated positions indexed by
// node number. In the arc list for each node, to-nodes are in random
// order.
//
// See also LabeledEuclidean.
func Euclidean(nNodes, nArcs int, affinity float64, patience int, rr *rand.Rand) (g Directed, pos []struct{ X, Y float64 }, err error) {
a := make(AdjacencyList, nNodes) // graph
ri, rf, re := rand.Intn, rand.Float64, rand.ExpFloat64
if rr != nil {
ri, rf, re = rr.Intn, rr.Float64, rr.ExpFloat64
}
// generate random positions
pos = make([]struct{ X, Y float64 }, nNodes)
for i := range pos {
pos[i].X = rf()
pos[i].Y = rf()
}
// arcs
var tooFar, dup int
arc:
for i := 0; i < nArcs; {
if tooFar == nArcs*patience {
err = errors.New("affinity not found")
return
}
if dup == nArcs*patience {
err = errors.New("overcrowding")
return
}
n1 := NI(ri(nNodes))
var n2 NI
for {
n2 = NI(ri(nNodes))
if n2 != n1 { // no graph loops
break
}
}
c1 := &pos[n1]
c2 := &pos[n2]
dist := math.Hypot(c2.X-c1.X, c2.Y-c1.Y)
if dist*affinity > re() { // favor near nodes
tooFar++
continue
}
for _, nb := range a[n1] {
if nb == n2 { // no parallel arcs
dup++
continue arc
}
}
a[n1] = append(a[n1], n2)
i++
}
g = Directed{a}
return
}
// LabeledEuclidean generates a random simple graph on the Euclidean plane.
//
// Arc label values in the returned graph g are indexes into the return value
// wt. Wt is the Euclidean distance between the from and to nodes of the arc.
//
// Otherwise the function arguments and return values are the same as for
// function Euclidean. See Euclidean.
func LabeledEuclidean(nNodes, nArcs int, affinity float64, patience int, rr *rand.Rand) (g LabeledDirected, pos []struct{ X, Y float64 }, wt []float64, err error) {
a := make(LabeledAdjacencyList, nNodes) // graph
wt = make([]float64, nArcs) // arc weights
ri, rf, re := rand.Intn, rand.Float64, rand.ExpFloat64
if rr != nil {
ri, rf, re = rr.Intn, rr.Float64, rr.ExpFloat64
}
// generate random positions
pos = make([]struct{ X, Y float64 }, nNodes)
for i := range pos {
pos[i].X = rf()
pos[i].Y = rf()
}
// arcs
var tooFar, dup int
arc:
for i := 0; i < nArcs; {
if tooFar == nArcs*patience {
err = errors.New("affinity not found")
return
}
if dup == nArcs*patience {
err = errors.New("overcrowding")
return
}
n1 := NI(ri(nNodes))
var n2 NI
for {
n2 = NI(ri(nNodes))
if n2 != n1 { // no graph loops
break
}
}
c1 := &pos[n1]
c2 := &pos[n2]
dist := math.Hypot(c2.X-c1.X, c2.Y-c1.Y)
if dist*affinity > re() { // favor near nodes
tooFar++
continue
}
for _, nb := range a[n1] {
if nb.To == n2 { // no parallel arcs
dup++
continue arc
}
}
wt[i] = dist
a[n1] = append(a[n1], Half{n2, LI(i)})
i++
}
g = LabeledDirected{a}
return
}
// Geometric generates a random geometric graph (RGG) on the Euclidean plane.
//
// An RGG is an undirected simple graph. Nodes are associated with coordinates
// uniformly distributed on a unit square. Edges are added between all nodes
// falling within a specified distance or radius of each other.
//
// The resulting number of edges is somewhat random but asymptotically
// approaches m = πr²n²/2. The method accumulates and returns the actual
// number of edges constructed. In the arc list for each node, to-nodes are
// ordered. Consider using ShuffleArcLists if random order is important.
//
// If Rand r is nil, the rand package default shared source is used.
//
// See also LabeledGeometric.
func Geometric(nNodes int, radius float64, rr *rand.Rand) (g Undirected, pos []struct{ X, Y float64 }, m int) {
// Expected degree is approximately nπr².
a := make(AdjacencyList, nNodes)
rf := rand.Float64
if rr != nil {
rf = rr.Float64
}
pos = make([]struct{ X, Y float64 }, nNodes)
for i := range pos {
pos[i].X = rf()
pos[i].Y = rf()
}
for u, up := range pos {
for v := u + 1; v < len(pos); v++ {
vp := pos[v]
dx := math.Abs(up.X - vp.X)
if dx >= radius {
continue
}
dy := math.Abs(up.Y - vp.Y)
if dy >= radius {
continue
}
if math.Hypot(dx, dy) < radius {
a[u] = append(a[u], NI(v))
a[v] = append(a[v], NI(u))
m++
}
}
}
g = Undirected{a}
return
}
// LabeledGeometric generates a random geometric graph (RGG) on the Euclidean
// plane.
//
// Edge label values in the returned graph g are indexes into the return value
// wt. Wt is the Euclidean distance between nodes of the edge. The graph
// size m is len(wt).
//
// See Geometric for additional description.
func LabeledGeometric(nNodes int, radius float64, rr *rand.Rand) (g LabeledUndirected, pos []struct{ X, Y float64 }, wt []float64) {
a := make(LabeledAdjacencyList, nNodes)
rf := rand.Float64
if rr != nil {
rf = rr.Float64
}
pos = make([]struct{ X, Y float64 }, nNodes)
for i := range pos {
pos[i].X = rf()
pos[i].Y = rf()
}
for u, up := range pos {
for v := u + 1; v < len(pos); v++ {
vp := pos[v]
if w := math.Hypot(up.X-vp.X, up.Y-vp.Y); w < radius {
a[u] = append(a[u], Half{NI(v), LI(len(wt))})
a[v] = append(a[v], Half{NI(u), LI(len(wt))})
wt = append(wt, w)
}
}
}
g = LabeledUndirected{a}
return
}
// GnmUndirected constructs a random simple undirected graph.
//
// Construction is by the ErdősRényi model where the specified number of
// distinct edges is selected from all possible edges with equal probability.
//
// Argument n is number of nodes, m is number of edges and must be <= n(n-1)/2.
//
// If Rand r is nil, the rand package default shared source is used.
//
// In the generated arc list for each node, to-nodes are ordered.
// Consider using ShuffleArcLists if random order is important.
//
// See also Gnm3Undirected, a method producing a statistically equivalent
// result, but by an algorithm with somewhat different performance properties.
// Performance of the two methods is expected to be similar in most cases but
// it may be worth trying both with your data to see if one has a clear
// advantage.
func GnmUndirected(n, m int, rr *rand.Rand) Undirected {
// based on Alg. 2 from "Efficient Generation of Large Random Networks",
// Vladimir Batagelj and Ulrik Brandes.
// accessed at http://algo.uni-konstanz.de/publications/bb-eglrn-05.pdf
ri := rand.Intn
if rr != nil {
ri = rr.Intn
}
re := n * (n - 1) / 2
ml := m
if m*2 > re {
ml = re - m
}
e := map[int]struct{}{}
for len(e) < ml {
e[ri(re)] = struct{}{}
}
a := make(AdjacencyList, n)
if m*2 > re {
i := 0
for v := 1; v < n; v++ {
for w := 0; w < v; w++ {
if _, ok := e[i]; !ok {
a[v] = append(a[v], NI(w))
a[w] = append(a[w], NI(v))
}
i++
}
}
} else {
for i := range e {
v := 1 + int(math.Sqrt(.25+float64(2*i))-.5)
w := i - (v * (v - 1) / 2)
a[v] = append(a[v], NI(w))
a[w] = append(a[w], NI(v))
}
}
return Undirected{a}
}
// GnmDirected constructs a random simple directed graph.
//
// Construction is by the ErdősRényi model where the specified number of
// distinct arcs is selected from all possible arcs with equal probability.
//
// Argument n is number of nodes, ma is number of arcs and must be <= n(n-1).
//
// If Rand r is nil, the rand package default shared source is used.
//
// In the generated arc list for each node, to-nodes are ordered.
// Consider using ShuffleArcLists if random order is important.
//
// See also Gnm3Directed, a method producing a statistically equivalent
// result, but by
// an algorithm with somewhat different performance properties. Performance
// of the two methods is expected to be similar in most cases but it may be
// worth trying both with your data to see if one has a clear advantage.
func GnmDirected(n, ma int, rr *rand.Rand) Directed {
// based on Alg. 2 from "Efficient Generation of Large Random Networks",
// Vladimir Batagelj and Ulrik Brandes.
// accessed at http://algo.uni-konstanz.de/publications/bb-eglrn-05.pdf
ri := rand.Intn
if rr != nil {
ri = rr.Intn
}
re := n * (n - 1)
ml := ma
if ma*2 > re {
ml = re - ma
}
e := map[int]struct{}{}
for len(e) < ml {
e[ri(re)] = struct{}{}
}
a := make(AdjacencyList, n)
if ma*2 > re {
i := 0
for v := 0; v < n; v++ {
for w := 0; w < n; w++ {
if w == v {
continue
}
if _, ok := e[i]; !ok {
a[v] = append(a[v], NI(w))
}
i++
}
}
} else {
for i := range e {
v := i / (n - 1)
w := i % (n - 1)
if w >= v {
w++
}
a[v] = append(a[v], NI(w))
}
}
return Directed{a}
}
// Gnm3Undirected constructs a random simple undirected graph.
//
// Construction is by the ErdősRényi model where the specified number of
// distinct edges is selected from all possible edges with equal probability.
//
// Argument n is number of nodes, m is number of edges and must be <= n(n-1)/2.
//
// If Rand r is nil, the rand package default shared source is used.
//
// In the generated arc list for each node, to-nodes are ordered.
// Consider using ShuffleArcLists if random order is important.
//
// See also GnmUndirected, a method producing a statistically equivalent
// result, but by an algorithm with somewhat different performance properties.
// Performance of the two methods is expected to be similar in most cases but
// it may be worth trying both with your data to see if one has a clear
// advantage.
func Gnm3Undirected(n, m int, rr *rand.Rand) Undirected {
// based on Alg. 3 from "Efficient Generation of Large Random Networks",
// Vladimir Batagelj and Ulrik Brandes.
// accessed at http://algo.uni-konstanz.de/publications/bb-eglrn-05.pdf
//
// I like this algorithm for its elegance. Pitty it tends to run a
// a little slower than the retry algorithm of Gnm.
ri := rand.Intn
if rr != nil {
ri = rr.Intn
}
a := make(AdjacencyList, n)
re := n * (n - 1) / 2
rm := map[int]int{}
for i := 0; i < m; i++ {
er := i + ri(re-i)
eNew := er
if rp, ok := rm[er]; ok {
eNew = rp
}
if rp, ok := rm[i]; !ok {
rm[er] = i
} else {
rm[er] = rp
}
v := 1 + int(math.Sqrt(.25+float64(2*eNew))-.5)
w := eNew - (v * (v - 1) / 2)
a[v] = append(a[v], NI(w))
a[w] = append(a[w], NI(v))
}
return Undirected{a}
}
// Gnm3Directed constructs a random simple directed graph.
//
// Construction is by the ErdősRényi model where the specified number of
// distinct arcs is selected from all possible arcs with equal probability.
//
// Argument n is number of nodes, ma is number of arcs and must be <= n(n-1).
//
// If Rand r is nil, the rand package default shared source is used.
//
// In the generated arc list for each node, to-nodes are ordered.
// Consider using ShuffleArcLists if random order is important.
//
// See also GnmDirected, a method producing a statistically equivalent result,
// but by an algorithm with somewhat different performance properties.
// Performance of the two methods is expected to be similar in most cases
// but it may be worth trying both with your data to see if one has a clear
// advantage.
func Gnm3Directed(n, ma int, rr *rand.Rand) Directed {
// based on Alg. 3 from "Efficient Generation of Large Random Networks",
// Vladimir Batagelj and Ulrik Brandes.
// accessed at http://algo.uni-konstanz.de/publications/bb-eglrn-05.pdf
ri := rand.Intn
if rr != nil {
ri = rr.Intn
}
a := make(AdjacencyList, n)
re := n * (n - 1)
rm := map[int]int{}
for i := 0; i < ma; i++ {
er := i + ri(re-i)
eNew := er
if rp, ok := rm[er]; ok {
eNew = rp
}
if rp, ok := rm[i]; !ok {
rm[er] = i
} else {
rm[er] = rp
}
v := eNew / (n - 1)
w := eNew % (n - 1)
if w >= v {
w++
}
a[v] = append(a[v], NI(w))
}
return Directed{a}
}
// GnpUndirected constructs a random simple undirected graph.
//
// Construction is by the Gilbert model, an ErdősRényi like model where
// distinct edges are independently selected from all possible edges with
// the specified probability.
//
// Argument n is number of nodes, p is probability for selecting an edge.
//
// If Rand r is nil, the rand package default shared source is used.
//
// In the generated arc list for each node, to-nodes are ordered.
// Consider using ShuffleArcLists if random order is important.
//
// Also returned is the actual size m of constructed graph g.
func GnpUndirected(n int, p float64, rr *rand.Rand) (g Undirected, m int) {
a := make(AdjacencyList, n)
if n < 2 {
return Undirected{a}, 0
}
rf := rand.Float64
if rr != nil {
rf = rr.Float64
}
// based on Alg. 1 from "Efficient Generation of Large Random Networks",
// Vladimir Batagelj and Ulrik Brandes.
// accessed at http://algo.uni-konstanz.de/publications/bb-eglrn-05.pdf
var v, w NI = 1, -1
g:
for c := 1 / math.Log(1-p); ; {
w += 1 + NI(c*math.Log(1-rf()))
for {
if w < v {
a[v] = append(a[v], w)
a[w] = append(a[w], v)
m++
continue g
}
w -= v
v++
if v == NI(n) {
break g
}
}
}
return Undirected{a}, m
}
// GnpDirected constructs a random simple directed graph.
//
// Construction is by the Gilbert model, an ErdősRényi like model where
// distinct arcs are independently selected from all possible arcs with
// the specified probability.
//
// Argument n is number of nodes, p is probability for selecting an arc.
//
// If Rand r is nil, the rand package default shared source is used.
//
// In the generated arc list for each node, to-nodes are ordered.
// Consider using ShuffleArcLists if random order is important.
//
// Also returned is the actual arc size m of constructed graph g.
func GnpDirected(n int, p float64, rr *rand.Rand) (g Directed, ma int) {
a := make(AdjacencyList, n)
if n < 2 {
return Directed{a}, 0
}
rf := rand.Float64
if rr != nil {
rf = rr.Float64
}
// based on Alg. 1 from "Efficient Generation of Large Random Networks",
// Vladimir Batagelj and Ulrik Brandes.
// accessed at http://algo.uni-konstanz.de/publications/bb-eglrn-05.pdf
var v, w NI = 0, -1
g:
for c := 1 / math.Log(1-p); ; {
w += 1 + NI(c*math.Log(1-rf()))
for ; ; w -= NI(n) {
if w == v {
w++
}
if w < NI(n) {
a[v] = append(a[v], w)
ma++
continue g
}
v++
if v == NI(n) {
break g
}
}
}
return Directed{a}, ma
}
// KroneckerDirected generates a Kronecker-like random directed graph.
//
// The returned graph g is simple and has no isolated nodes but is not
// necessarily fully connected. The number of of nodes will be <= 2^scale,
// and will be near 2^scale for typical values of arcFactor, >= 2.
// ArcFactor * 2^scale arcs are generated, although loops and duplicate arcs
// are rejected. In the arc list for each node, to-nodes are in random
// order.
//
// If Rand r is nil, the rand package default shared source is used.
//
// Return value ma is the number of arcs retained in the result graph.
func KroneckerDirected(scale uint, arcFactor float64, rr *rand.Rand) (g Directed, ma int) {
a, m := kronecker(scale, arcFactor, true, rr)
return Directed{a}, m
}
// KroneckerUndirected generates a Kronecker-like random undirected graph.
//
// The returned graph g is simple and has no isolated nodes but is not
// necessarily fully connected. The number of of nodes will be <= 2^scale,
// and will be near 2^scale for typical values of edgeFactor, >= 2.
// EdgeFactor * 2^scale edges are generated, although loops and duplicate edges
// are rejected. In the arc list for each node, to-nodes are in random
// order.
//
// If Rand r is nil, the rand package default shared source is used.
//
// Return value m is the true number of edges--not arcs--retained in the result
// graph.
func KroneckerUndirected(scale uint, edgeFactor float64, rr *rand.Rand) (g Undirected, m int) {
al, s := kronecker(scale, edgeFactor, false, rr)
return Undirected{al}, s
}
// Styled after the Graph500 example code. Not well tested currently.
// Graph500 example generates undirected only. No idea if the directed variant
// here is meaningful or not.
//
// note mma returns arc size ma for dir=true, but returns size m for dir=false
func kronecker(scale uint, edgeFactor float64, dir bool, rr *rand.Rand) (g AdjacencyList, mma int) {
rf, ri, rp := rand.Float64, rand.Intn, rand.Perm
if rr != nil {
rf, ri, rp = rr.Float64, rr.Intn, rr.Perm
}
N := 1 << scale // node extent
M := int(edgeFactor*float64(N) + .5) // number of arcs/edges to generate
a, b, c := 0.57, 0.19, 0.19 // initiator probabilities
ab := a + b
cNorm := c / (1 - ab)
aNorm := a / ab
ij := make([][2]NI, M)
bm := bits.New(N)
var nNodes int
for k := range ij {
var i, j int
for b := 1; b < N; b <<= 1 {
if rf() > ab {
i |= b
if rf() > cNorm {
j |= b
}
} else if rf() > aNorm {
j |= b
}
}
if bm.Bit(i) == 0 {
bm.SetBit(i, 1)
nNodes++
}
if bm.Bit(j) == 0 {
bm.SetBit(j, 1)
nNodes++
}
r := ri(k + 1) // shuffle edges as they are generated
ij[k] = ij[r]
ij[r] = [2]NI{NI(i), NI(j)}
}
p := rp(nNodes) // mapping to shuffle IDs of non-isolated nodes
px := 0
rn := make([]NI, N)
for i := range rn {
if bm.Bit(i) == 1 {
rn[i] = NI(p[px]) // fill lookup table
px++
}
}
g = make(AdjacencyList, nNodes)
ij:
for _, e := range ij {
if e[0] == e[1] {
continue // skip loops
}
ri, rj := rn[e[0]], rn[e[1]]
for _, nb := range g[ri] {
if nb == rj {
continue ij // skip parallel edges
}
}
g[ri] = append(g[ri], rj)
mma++
if !dir {
g[rj] = append(g[rj], ri)
}
}
return
}