189 lines
5.1 KiB
Markdown
189 lines
5.1 KiB
Markdown
# Quickstart
|
|
|
|
This page will give you a short introduction to the concepts in Juniper.
|
|
|
|
Once you are done here, head over to the [Tutorial][tutorial] to learn how to
|
|
use Juniper by creating a full setup step by step, or consult the other chapters
|
|
for more detailed information.
|
|
|
|
## Installation
|
|
|
|
!FILENAME Cargo.toml
|
|
|
|
```toml
|
|
[dependencies]
|
|
juniper = "0.11"
|
|
```
|
|
|
|
## Schema example
|
|
|
|
Exposing simple enums and structs as GraphQL is just a matter of adding a custom
|
|
derive attribute to them. Juniper includes support for basic Rust types that
|
|
naturally map to GraphQL features, such as `Option<T>`, `Vec<T>`, `Box<T>`,
|
|
`String`, `f64`, and `i32`, references, and slices.
|
|
|
|
For more advanced mappings, Juniper provides multiple macros to map your Rust
|
|
types to a GraphQL schema. The most important one is the
|
|
[graphql_object!][jp_obj_macro] macro that is used for declaring an object with
|
|
resolvers, which you will use for the `Query` and `Mutation` roots.
|
|
|
|
```rust
|
|
use juniper::{FieldResult};
|
|
|
|
# struct DatabasePool;
|
|
# impl DatabasePool {
|
|
# fn get_connection(&self) -> FieldResult<DatabasePool> { Ok(DatabasePool) }
|
|
# fn find_human(&self, _id: &str) -> FieldResult<Human> { Err("")? }
|
|
# fn insert_human(&self, _human: &NewHuman) -> FieldResult<Human> { Err("")? }
|
|
# }
|
|
|
|
#[derive(juniper::GraphQLEnum)]
|
|
enum Episode {
|
|
NewHope,
|
|
Empire,
|
|
Jedi,
|
|
}
|
|
|
|
#[derive(juniper::GraphQLObject)]
|
|
#[graphql(description="A humanoid creature in the Star Wars universe")]
|
|
struct Human {
|
|
id: String,
|
|
name: String,
|
|
appears_in: Vec<Episode>,
|
|
home_planet: String,
|
|
}
|
|
|
|
// There is also a custom derive for mapping GraphQL input objects.
|
|
|
|
#[derive(juniper::GraphQLInputObject)]
|
|
#[graphql(description="A humanoid creature in the Star Wars universe")]
|
|
struct NewHuman {
|
|
name: String,
|
|
appears_in: Vec<Episode>,
|
|
home_planet: String,
|
|
}
|
|
|
|
// Now, we create our root Query and Mutation types with resolvers by using the
|
|
// graphql_object! macro.
|
|
// Objects can have contexts that allow accessing shared state like a database
|
|
// pool.
|
|
|
|
struct Context {
|
|
// Use your real database pool here.
|
|
pool: DatabasePool,
|
|
}
|
|
|
|
// To make our context usable by Juniper, we have to implement a marker trait.
|
|
impl juniper::Context for Context {}
|
|
|
|
struct Query;
|
|
|
|
juniper::graphql_object!(Query: Context |&self| {
|
|
|
|
field apiVersion() -> &str {
|
|
"1.0"
|
|
}
|
|
|
|
// Arguments to resolvers can either be simple types or input objects.
|
|
// The executor is a special (optional) argument that allows accessing the context.
|
|
field human(&executor, id: String) -> FieldResult<Human> {
|
|
// Get the context from the executor.
|
|
let context = executor.context();
|
|
// Get a db connection.
|
|
let connection = context.pool.get_connection()?;
|
|
// Execute a db query.
|
|
// Note the use of `?` to propagate errors.
|
|
let human = connection.find_human(&id)?;
|
|
// Return the result.
|
|
Ok(human)
|
|
}
|
|
});
|
|
|
|
struct Mutation;
|
|
|
|
juniper::graphql_object!(Mutation: Context |&self| {
|
|
|
|
field createHuman(&executor, new_human: NewHuman) -> FieldResult<Human> {
|
|
let db = executor.context().pool.get_connection()?;
|
|
let human: Human = db.insert_human(&new_human)?;
|
|
Ok(human)
|
|
}
|
|
});
|
|
|
|
// A root schema consists of a query and a mutation.
|
|
// Request queries can be executed against a RootNode.
|
|
type Schema = juniper::RootNode<'static, Query, Mutation>;
|
|
|
|
# fn main() {
|
|
# let _ = Schema::new(Query, Mutation{});
|
|
# }
|
|
```
|
|
|
|
We now have a very simple but functional schema for a GraphQL server!
|
|
|
|
To actually serve the schema, see the guides for our various [server integrations](./servers/index.md).
|
|
|
|
You can also invoke the executor directly to get a result for a query:
|
|
|
|
## Executor
|
|
|
|
You can invoke `juniper::execute` directly to run a GraphQL query:
|
|
|
|
```rust
|
|
# // Only needed due to 2018 edition because the macro is not accessible.
|
|
# #[macro_use]
|
|
# extern crate juniper;
|
|
use juniper::{FieldResult, Variables, EmptyMutation};
|
|
|
|
#[derive(juniper::GraphQLEnum, Clone, Copy)]
|
|
enum Episode {
|
|
NewHope,
|
|
Empire,
|
|
Jedi,
|
|
}
|
|
|
|
struct Query;
|
|
|
|
juniper::graphql_object!(Query: Ctx |&self| {
|
|
field favoriteEpisode(&executor) -> FieldResult<Episode> {
|
|
// Use the special &executor argument to fetch our fav episode.
|
|
Ok(executor.context().0)
|
|
}
|
|
});
|
|
|
|
// Arbitrary context data.
|
|
struct Ctx(Episode);
|
|
|
|
// A root schema consists of a query and a mutation.
|
|
// Request queries can be executed against a RootNode.
|
|
type Schema = juniper::RootNode<'static, Query, EmptyMutation<Ctx>>;
|
|
|
|
fn main() {
|
|
// Create a context object.
|
|
let ctx = Ctx(Episode::NewHope);
|
|
|
|
// Run the executor.
|
|
let (res, _errors) = juniper::execute(
|
|
"query { favoriteEpisode }",
|
|
None,
|
|
&Schema::new(Query, EmptyMutation::new()),
|
|
&Variables::new(),
|
|
&ctx,
|
|
).unwrap();
|
|
|
|
// Ensure the value matches.
|
|
assert_eq!(
|
|
res,
|
|
graphql_value!({
|
|
"favoriteEpisode": "NEW_HOPE",
|
|
})
|
|
);
|
|
}
|
|
```
|
|
|
|
[hyper]: servers/hyper.md
|
|
[warp]: servers/warp.md
|
|
[rocket]: servers/rocket.md
|
|
[iron]: servers/iron.md
|
|
[tutorial]: ./tutorial.html
|
|
[jp_obj_macro]: https://docs.rs/juniper/latest/juniper/macro.graphql_object.html
|