- preserve and reuse defined impl blocks in #[graphql_object] and #[graphql_subscription] macros expansion - allow renaming `ScalarValue` type parameter in expanded code via `scalar = S: ScalarValue` syntax Additionally: - rename `rename` attribute's argument to `rename_all` - support `rename_all` in #[graphql_interface] macro
6.3 KiB
Quickstart
This page will give you a short introduction to the concepts in Juniper.
Juniper follows a code-first approach to defining GraphQL schemas. If you would like to use a schema-first approach instead, consider juniper-from-schema for generating code from a schema file.
Installation
[dependencies]
juniper = "0.15"
Schema example
Exposing simple enums and structs as GraphQL is just a matter of adding a custom
derive attribute to them. Juniper includes support for basic Rust types that
naturally map to GraphQL features, such as Option<T>
, Vec<T>
, Box<T>
,
String
, f64
, and i32
, references, and slices.
For more advanced mappings, Juniper provides multiple macros to map your Rust
types to a GraphQL schema. The most important one is the
graphql_object procedural macro that is used for declaring an object with
resolvers, which you will use for the Query
and Mutation
roots.
# #![allow(unused_variables)]
# extern crate juniper;
# use std::fmt::Display;
use juniper::{
graphql_object, EmptySubscription, FieldResult, GraphQLEnum,
GraphQLInputObject, GraphQLObject, ScalarValue,
};
#
# struct DatabasePool;
# impl DatabasePool {
# fn get_connection(&self) -> FieldResult<DatabasePool> { Ok(DatabasePool) }
# fn find_human(&self, _id: &str) -> FieldResult<Human> { Err("")? }
# fn insert_human(&self, _human: &NewHuman) -> FieldResult<Human> { Err("")? }
# }
#[derive(GraphQLEnum)]
enum Episode {
NewHope,
Empire,
Jedi,
}
#[derive(GraphQLObject)]
#[graphql(description = "A humanoid creature in the Star Wars universe")]
struct Human {
id: String,
name: String,
appears_in: Vec<Episode>,
home_planet: String,
}
// There is also a custom derive for mapping GraphQL input objects.
#[derive(GraphQLInputObject)]
#[graphql(description = "A humanoid creature in the Star Wars universe")]
struct NewHuman {
name: String,
appears_in: Vec<Episode>,
home_planet: String,
}
// Now, we create our root Query and Mutation types with resolvers by using the
// object macro.
// Objects can have contexts that allow accessing shared state like a database
// pool.
struct Context {
// Use your real database pool here.
pool: DatabasePool,
}
// To make our context usable by Juniper, we have to implement a marker trait.
impl juniper::Context for Context {}
struct Query;
#[graphql_object(
// Here we specify the context type for the object.
// We need to do this in every type that
// needs access to the context.
context = Context,
)]
impl Query {
fn apiVersion() -> &'static str {
"1.0"
}
// Arguments to resolvers can either be simple types or input objects.
// To gain access to the context, we specify a argument
// that is a reference to the Context type.
// Juniper automatically injects the correct context here.
fn human(context: &Context, id: String) -> FieldResult<Human> {
// Get a db connection.
let connection = context.pool.get_connection()?;
// Execute a db query.
// Note the use of `?` to propagate errors.
let human = connection.find_human(&id)?;
// Return the result.
Ok(human)
}
}
// Now, we do the same for our Mutation type.
struct Mutation;
#[graphql_object(
context = Context,
// If we need to use `ScalarValue` parametrization explicitly somewhere
// in the object definition (like here in `FieldResult`), we could
// declare an explicit type parameter for that, and specify it.
scalar = S: ScalarValue + Display,
)]
impl Mutation {
fn createHuman<S: ScalarValue + Display>(context: &Context, new_human: NewHuman) -> FieldResult<Human, S> {
let db = context.pool.get_connection().map_err(|e| e.map_scalar_value())?;
let human: Human = db.insert_human(&new_human).map_err(|e| e.map_scalar_value())?;
Ok(human)
}
}
// A root schema consists of a query, a mutation, and a subscription.
// Request queries can be executed against a RootNode.
type Schema = juniper::RootNode<'static, Query, Mutation, EmptySubscription<Context>>;
#
# fn main() {
# let _ = Schema::new(Query, Mutation{}, EmptySubscription::new());
# }
We now have a very simple but functional schema for a GraphQL server!
To actually serve the schema, see the guides for our various server integrations.
Juniper is a library that can be used in many contexts--it does not require a server and it does not have a dependency on a particular transport or serialization format. You can invoke the executor directly to get a result for a query:
Executor
You can invoke juniper::execute
directly to run a GraphQL query:
# // Only needed due to 2018 edition because the macro is not accessible.
# #[macro_use] extern crate juniper;
use juniper::{
graphql_object, EmptyMutation, EmptySubscription, FieldResult,
GraphQLEnum, Variables, graphql_value,
};
#[derive(GraphQLEnum, Clone, Copy)]
enum Episode {
NewHope,
Empire,
Jedi,
}
// Arbitrary context data.
struct Ctx(Episode);
impl juniper::Context for Ctx {}
struct Query;
#[graphql_object(context = Ctx)]
impl Query {
fn favoriteEpisode(context: &Ctx) -> FieldResult<Episode> {
Ok(context.0)
}
}
// A root schema consists of a query, a mutation, and a subscription.
// Request queries can be executed against a RootNode.
type Schema = juniper::RootNode<'static, Query, EmptyMutation<Ctx>, EmptySubscription<Ctx>>;
fn main() {
// Create a context object.
let ctx = Ctx(Episode::NewHope);
// Run the executor.
let (res, _errors) = juniper::execute_sync(
"query { favoriteEpisode }",
None,
&Schema::new(Query, EmptyMutation::new(), EmptySubscription::new()),
&Variables::new(),
&ctx,
).unwrap();
// Ensure the value matches.
assert_eq!(
res,
graphql_value!({
"favoriteEpisode": "NEW_HOPE",
})
);
}